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We present a numerical method using the level set approach for solving incom-
pressible two-phase flow with surface tension. In the level set approach, the free
surface is represented as the zero level set of a smooth function; this has the effect of
replacing the advection of density, which has steep gradients at the free surface, with
the advection of the level set function, which is smooth. In addition, the free surface
can merge or break up with no special treatment. We maintain the level set function
as the signed distance from the free surface in order to accurately compute flows with
high density ratios and stiff surface tension effects. In this work, we couple the level
set scheme to an adaptive projection method for the incompressible Navier—Stokes
equations, in order to achieve higher resolution of the free surface with a minimum
of additional expense. We present two-dimensional axisymmetric and fully three-
dimensional results of air bubble and water drop computations1999 Academic Press
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1. INTRODUCTION

In this paper we describe an adaptive level set approach for computing incompres
two-phase flow in two or three dimensions. Our numerical method is designed for fi
characterized by large density and viscosity ratios at the free surface, e.g. air and \
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and also includes the effects due to surface tension. Our method is also designed for f
in which the free surface separating the two-phases is allowed to merge or break. Inc
pressible two-phase flow algorithms have been used to model many applications, e.g.
impact on a pool of water [36], gas bubbles bursting at a free surface [14], ink-jet devi
[20], bubbles in a box [21], and water waves [24, 30, 16].

Existing computational methods used to solve incompressible two-phase flow proble
include front-tracking methods [50, 21, 49], boundary integral methods [36, 14, 30, 1
volume-of-fluid methods [20, 39, 15], phase field methods [27], capturing methods [4
and level set methods [45, 44, 17, 22].

All of the above methods have their strengths and weaknesses. An advantage of fr
tracking methods is that marker particles are introduced explicitly to keep track of the fra
This generally reduces by a considerable amount the resolution needed to maintain acct
comparable to front-capturing methods for the evolution of the free surface. Howe\
regridding algorithms must be employed with front-tracking methods in order to preve
marker particles from coming together at points of large curvature; an explanation of
necessity of regridding is presented in [37]. Another difficulty with front-tracking methoc
is the fact that extra code needs to be added in order to reconnect for disconnect the
surface separating fluids.

Volume-of-fluid methods are methods based on discretizing the volume fraction of
of the fluids. The motion of the free surface is modeled by solving a conservation law
the volume fraction. As a consequence [39], one can use a conservative finite differe
method to update the volume fractions and, except for errors that occur as a resu
numerical truncation, the volume of each fluid is conserved. Volume of fluid methoc
like level set methods, do not require special procedures to model topological change
the front. A disadvantage of volume-of-fluid methods is that it is difficult to calculate tt
curvature of the front from volume fractions.

We shall use the level set approach [45, 37], coupled with incompressible adaptive nr
methodology [3]. Although the level set method does not have the same conserva
properties as volume-of-fluid methods or front-tracking methods, the strengths of the le
set method lie in its ability to accurately compute flows with surface tension and chan
in topology. Furthermore, the level set method generalizes easily to three dimensions
opposed to front tracking or boundary integral methods, we do not have to add extra c
in order to reconnect or disconnect the interface separating fluids. Since we never ha\
explicitly reconstruct the free surface from the level set function, we avoid complicat
front-tracking regridding algorithms or volume-of-fluid reconstruction algorithms. Finall
we use the level set method because the method allows us to accurately compute prok
with surface tension. We use the continuum approach [17, 15] in order to represent
surface tension force as a body force. The surface tension term and local interfacial curve
are easily represented in terms of the level set function. In ourimplementation of the leve
method, the level set function will be maintained as the signed distance to the free surf
thus curvature can be accurately computed from the level set function.

We combine the level set approach with the variable density adaptive mesh projec
method developed by Almgreat al.[3]. Previous adaptive level set implementations have
been developed by [32] for computing motion by mean curvature and by [22] for computi
thermocapillary motion of deformable drops. We generalize the work of Aimgirah[3]
to incompressible two-phase flows in which the density and viscosity ratio between flu
can be 1000:1. Adaptive mesh refinement (AMR) [11, 10] enables us to increase the
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resolution at regions near the free surface and additionally at regions near points of
curvature.

2. GOVERNING EQUATIONS

We use the level set functioa, for tracking the interface between the gas and the liqu
[37, 45, 44]. In our algorithm the interfacE, is the zero level set af:

I'={x]¢(Xx,t) =0}
The level set functiow is positive in the liquid and negative in the gas. Hence we have

>0, if xethe liquid
d(X, 1)< =0, ifxel, )
<0, if xethe gas

The unit normal on the interface, pointing from the gas into the liquid, and the curva
of the interface can easily be expressed in termg(@f t):

\Y \Y
n= Vo , k=V. <¢)
IVl |40 Vo
Since the interface moves with the fluid, the evolutiopa$ given by

3¢ B
S tuve =0 @)

$=0

The governing equation for the fluid velocity and pressurand p, along with the free
surface boundary conditions can be written as

vp 1V.2uD 1 «($)VH(@)
U=-——P _U.vU+= _ = F 3
= YYYTR T W e T ®)
V-U=0, 4)

whereD is the rate of deformation tensdr= %(VU + VU, Fisthe gravitational force,
p andu are, respectively, the density and viscosity, &@) is the Heaviside function:

0, if¢ <D0,
H@) =143 if¢p=0,
1, if¢p>0.

The curvaturer (¢) is defined as

v
—v. (2.
“(@ <|V¢|>

We assume the density and viscosity are constant in each fluid, with vedussd 4,
respectively, in the liquid, ang, and i, in the gas. We define the nondimensionalize
quantities

p(#) = H(9) + (p2/p1)(1 — H(9)) ®)
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and

n(@) = H(g) + (n2/pn1) (1 — H(9)). (6)

The dimensionless parameters used are Reynolds numbes; RU /11, Froude num-
ber,Fr =U?/gL and Weber numbe¥V = p;LU?/o.

The Navier—Stokes equations for two-phase flows were written in similar form and us
by Unverdi and Tryggvason [50]. The fact that the surface tension can be written as a b
force concentrated at the interface has been used by Unverdi and Tryggvason [50]
Brackbill, Kothe, and Zemach [15]. The form we use here is due to Chang, Hou, Merrim:
and Osher [17].

2.1. Projection Methodology

The method used to solve for velocity and pressure is a variable density approxir
projection method described by [5, 39]. We rewrite (3) as

Ui+ = Vp=V(U, ¢ @
tT g PV

We then take the divergence of both sides of (7) and use the fadf tHat =0 in order to
reduce (3) and (4) into a single equation for pressure,

V.Eszv-v. (8)
0

After solving (8) forV p the updated value fdd; is
U=V —Vp/p. C)
For future reference, we define the projection operBtas
Ut = P(V). (10)
Combining (10) and (9) yields

Vp/p =V —U =V —PV) = (I — P)V). (11)

3. SINGLE-GRID DISCRETIZATION

Our single grid discretization procedure for approximating (2) and (3) is based on the v
able density projection method described by Belal.[7], Bell and Marcus [9], AlImgren
etal.[5], and Pucketet al.[39]. For the single grid discretization, we have uniform grid spac
ing Ax = Ay = h. The discrete velocity fielwﬂj,k and the discrete level set functicbﬁj’k
arelocated atcell centers. The pressnnii};(;\l//zéJ-H/z,kﬂ/2 islocated at cell corners. Adiagram
of where the discrete variables are located in relation to the computational grid is show
Fig. 1.J represents the index of the computational cell closest to the top physical bounde
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Physical boundary

Gas or Liquid

bi-1,7 i bit1,
U1, Ui, Uit

Pi-3/2,0-1/2 Pi-1/2,J-1/2 Pi+1/2,7-1/2
bi-1,0-1 i -1 Pit1,7-1
Ui1,g- Uija Uit1,0-

Pi—-3/2,J-3/2 Pi-1/2,7-3/2 Pi+1/2,7-3/2
Pi-1,0-2 #ig-2 biv1,7-2
Ui1,- Uij-2 Uiy1,0-

Pi—3/2,J-5/2 Pi—1/2,J~5/2 i+1/2,J-5/2

FIG. 1. Diagram of where the discrete variabldsp, and¢ are located in relation to the computational grid
and the physical boundary.

3.1. Temporal Discretization

The time-stepping procedure is based on the Crank—Nicholson method. At the begir
of each time step, we are given the velodit} and the level set functiop” at timet".
We are also given the lagged pressure gradnt/2. The densityp" = p(¢"), viscosity
u" = u(¢") and Heaviside functiorl" = H (¢") are given at timé" since they are functions
of ¢". We discretize (3) and (2) in time using the following steps:

1. Level set update fap"*+?:
" = " — At[U - V" TY2, (12)

Here, the brackets {]"*1/2 mean the discrete version of the continuous operator. T
nonlinear advection termJ - V¢]"*%/2 is evaluated using an explicit predictor—correcto
scheme and requires only the available datd ain Section 3.2, we give a description of
how [U - V¢]"*+%/2 is formed. Once "+ is obtained from (12), the following quantities are
updated:

1
oY= S(9" +9™h (13)
pI’H-l/Z — p(¢n+1/2) (14)
Mn+1/2 — M(¢n+1/2). (15)

2. Semi-implicit viscous solve for the intermediate velodiky:

U* —uyn nt1/2 Gpn—l/z L£r+ yoll Mn+1/2
AL —lU- WU T pntL2 + 2002 pntl/2 +F (16
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L is a second-order finite difference approximatioR)V - (2w (¢) D), M is afinite dif-
ference approximation td /W)« (¢)VH, andG pis an approximation t& p. In Section 3.3
we give a description o&p, £, and M. The nonlinear advection terna - V)U]"+%2 is
evaluated using an explicit predictor—corrector scheme and requires only the available
att". In Section 3.2, we give a description of hoWJ[: V)U]"*¥/2is discretized. The density
p, Viscosity u, Heaviside functiorH, and curvature are constructed from the level set
function calculated at tim&'*%/2 in the level set advection step (13). The lagged pressul
gradientG p"~%/2 and forceF are treated as source terms. Equation (16) when discretiz
results in a coupled parabolic solve for all velocity components*ofWe use multigrid as
an iteration method for solving (16).

3. Projection step fou"+1:

Ur‘H—l —_yn u* —uyn
()

At At
17

1 n+1/2 1 n—1/2 ur - u"
o2 CP = G (=P )
P represents the discretization of the projection operator (10). In Section 3.4 we giv
description ofP.

4. Redistance step fg" 1. We maintain the level set functiahas the signed normal
distance to the free surface. In Section 3.5, we give a description of the redistance stej

3.1.1. Timestep. The timestepAt at timet" is determined by restrictions due to the
CFL condition, gravity, viscosity and surface tension [45, 15]:

. 3 _p"AXx%2 Ax [2Ax
At < min( /W PLEP2) \ya2 3 PP AXT AX [ J2AXY
i,j,k 8w 14 u" [un| Fr

where

We note that, even though we handle the viscous terms semi-implicitly, we have still fou
a need for the stringent timestep constraint. One reason for this, as pointed out by Almg
et al. [3] and Minion [34], is the fact that viscous terms are not included in defining tt
states used in the transverse derivatives. Here, since our flows are not dominated by vis
effects, we choose to handle the viscous terms semi-implicitly in order to preserve a t
order of accuracy. In Section 5.2, we found that the percentage of time spent solving
was 16%. In [46], flows involving oil and water were computed; since the viscosity of
is very large in comparison to water, the viscous terms were handled implicitly by [46] a
no viscous timestep restriction was necessary.

3.2. Approximation of the Advection Terms
In this section, we describe the discretization of the advection terms
[(U-Wyupe (18)
and

[U - V]2, (19)
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The discretization of the advection terms in this algorithm is very similar to the discretizat
used by [39, 3]. It is a predictor—corrector method based on the unsplit Godunov me:
introduced by Colella [19].

In the predictor we extrapolate the velocltyand the level set function to the cell
faces at"1/2 using a second-order Taylor series expansion in space and time. The -
derivativeUy is replaced using (3) and the time derivatiyds replaced using (2). For face
(i+1/2, j, k) this gives

AX Ul At At — At —
U:]Ill//zzjl_k = Ulnjk + ( - )UQ,ijk - ?(Uuy)ijk - ?(wuz)ijk

2 2

n—1/2 n

At i

LY L TR ik k4 (20)
2 :0|]k pijk :0|Jk

Ax At At — At —
¢in«:>]_l//22,’j%k ¢Ijk + < 2 k >¢x |]k (U¢y)ijk - 7(w¢2)ijka (21)

extrapolated from celli, j, k), and

Ax Ul At At — 0.
n+1/2,R i+1,jk
Ulta = Ul - < 2 * 2> wirtik = 5 WU = S Uk
1/2 n n
At - Lh MD
LAt Gp 1k n |n+1,1k _ nI+1,ll< +F (22)
2 ,01+1,,-k PitLik  Pitijk

AX Ul At At — At —
+1/2,R i+1,jk
¢in+1//2,j,k =1k — (2 t— >¢Q,i+1,jk = & Wdyivsik = 5 (Wisiik,

(23)

extrapolated from celli + 1, j, k).
Analogous formulae are used to predict values at each of the other faces of the cell

n+1/2.F/B | n+1/2U/D ,n+1/2F/B n+1/2,U/D
Uitk - Yijkir2 o Pij+izk o Dijkrie (24)

The first derivatives normal to the faddy, and¢y for the example in (20) and (23) are
evaluated using a monotonicity-limited fourth-order slope approximation [18]. The limiti
is done on each component of the velocityaindividually.

The transverse derivative terms,

UUy, wUZv U¢y7 w¢z,

are evaluated by first extrapolatikjand¢ to the transverse faces from the cell centers ¢

either side, using normal derivatives only, and then choosing between these states usi

upwinding procedure as described in detail by AlImgeeal.[3] and Pucketet al.[39].
Once we have computed;/5 /%, v 1% /®, andw(j'/7}/®, we are in a position to

construct the normal face-centered edge velociti¢%at?:

uADv LAD whDv
i+1/2, jk> IJ+1/2k’ Wij k+1/2-
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Givenu'/1/2 i andu'117> %, we use an upwinding procedure to choaBg}/ ,:

ut, ifut >0 ut+uR>0,
u[‘jll//zzlk =<0, ifut<0,uR>00oru-t+uR=0, (25)

uR ifuR<0o;ut+uR<o.

Here, we suppress ther1/2, j, k spatial indices on left and right states and we also suf
press then + 1/2 temporal index.
. . 1/2 n+1/2
We follow a similar procedure as in (25) to constru#},ﬁl/z’k andw; j if1/2-
These normal velocities on cell faces&t'/?,

n+1/2 n+1/2 n+1/2
Uiy1/2,jk» Vi j+1/2.k Wij kr1/2: (26)

are second-order accurate but do not, in general, satisfy the discrete divergence-free c
tion. In order to make these velocities divergence-free, we apply the MAC projection [
The equation

DMAC iGMAC MAC | _ DMAC (Un+1/2) (27)
o" P -
is solved forpMAC, where
n+1/2 n+1/2 n+1/2 n+1/2 n+1/2 n+1/2

DMAC yn+1/2 _ Ui 12k — Y12k n Vij+1/2k — Yi,j-1/2,k n Wi j k+1/2 — Wi jk-1/2
AX Ay Az

andGMAC = _ (DMACYT g that

MAC MAC
_ (P35 — PMK)
i+1/2,jk — Ax

(G)l\(/IAC pMAC )

with GJ!*© andG® defined analogously. The resulting linear system (27) is solved usit
a multigrid preconditioned conjugate gradient solver [48].
The face-based advection velocitiesst/? are then defined by

1
n+1/2 G l)\(/IAC

ADV _ MAC
Uity ik = YUig12jk — )

p (28)

n i+1/2,j,k
Pi1/2.ik /2]

with v/, andwf®Y. , , defined analogously. The quantjsf) ; , ;  in (28) is defined
by
n _ } n n
Pit12jk = Z(loiik + Pi+1,ik)

with o' 112« @andpf’; 41/, defined analogously.
The next step, after constructing the advective velocities

ADV ADV ADV
Uit2,i ke Ui j+1/2,k Wijk+1/20
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is to choose the appropriate statdq’&f/é ks gb{‘jll/f ik given the left and right states in (20)
thru (23):

yrl2L nt1/2R ¢n+1/2,L ¢n+1/2,R

i+1/2,j.k> Yi+1/2,j.k Pi+1/2,j.k Pi+1/2,j k-
We have
ut, if uAPY > 0,
U2 = 4 3(US+UR), if ut? =0, (29)
UR, if UAPY < 0;
ot if UADY > 0,
S E =S 3@+ 9B, ifut =0, (30)
BR, if UADY < 0.

Here, we suppress thet1/2, |, k spatial indices on left and right states and we als
suppress tha + 1/2 temporal index.

We follow a similar procedure as in (30) and (29) to construct

n+1/2 n+1/2 n+1/2 n+1/2
Ui iv1260 Vi k2 911260 P jiiiy2:

The advection terms can now be defined by

ADV ADV
(U vyupy? = L Wiziet sk

Lk T Ay 5 Uitz2jk — Uitz
ADV ADV
1 vk T Vi 12k U U

Ay 5 (Ui j+12k — Ui j—12k)

= AN A RN ST Ui jk+12 = Vijk-172);  (31)
Az 5 ike1/2 = Ui j k-172);

ADV ADV
12 1 Uik T Uil jk
[(U- V)‘p]in,er,k/ = Ax LAY 5 =L (Dit1/2,j.k — Pi—1/2,j.k)

ADV ADV
1 Vet Ui,jfl/z,k((p_ _ e )
Ay 2 i,j+1/2,k i,j—1/2k

1 wi/_,\E\k/+1/2 + wiA,\E}{—l/z
N > (@i,j.k+1/2 — Di,j k—1/2)- (32)

3.3. Discretization of Pressure Gradient, Viscous and Surface Tension Terms

In this section we describe the finite difference approximation in two dimensions to
pressure gradien p, viscous term£, and surface tension term\l. The finite difference
approximations in three dimensions follow analogously.

The discrete pressure gradient is defined by

Pi+1/2,j+1/2 + Pi+1/2.j-1/2 — Pi—1/2.j+1/2 — Pi—1/2,j-1/2
2AX
Gpij = , (33)
Pi+1/2.j+1/2 — Pi+1/2.j-1/2 + Pi—1/2.j+1/2 — Pi—1/2,j-1/2
2Ay
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whereG here denotes a discrete gradient operator defined at cell centers but operatin
nodal data.
The first component of the viscous tef@yR)V - 2u(¢)D is discretized as

212, (Uig1,j — Ui j) —2ui-1/2,j (Uij —Ui—1j)
2

1 AX
1_ = Hij+12(Uij+1 — Ui ) — @i j—172(Ui j — Ui j-1)
('C)IJ - R + Ay? ’
+ Mij+12(Witt j+1 = Vi—1j+1 F Vit —Vi-1j) — Mij-12Wit1j —Vi-1j T Vit1j-1 —Vi-1j-1)
AXAY
where

1 1
Mit12j = E(M@i,j) + w(Pive i)  Mijri2 = E(M(ﬁbi,j) + (i j11).

The second component of the viscous tefm),ﬁ , Is discretized in a similar manner.

The surface tension ter@/W)« (¢) VH (¢) is discretized as
1
(M)ij = 1 (DN)ij (GH™);. (34)
Nit+1/2,j+1/2 is the discrete approximation of the level set norivigl/| V|,

(Ghivzjriz. (35)

Nit1/2,j+1/2 = ,
[(G)it1/2,j+1/2]

where
Gitrjt1t+Pivrj —Pijr1—dij
2AX

Git1j+1— Pit1j T dij+1— i
2Ay

(GP)it12j+12 = (36)

Here we uséS to refer to the discrete gradient operator defined on nodes but operating
cell-centered data.
We define the cell-based discrete divergence opeiatoy

ni1+1/2,j—1/2 + nil+1/2,j+1/2 - nil—1/2_1—1/2 - nil—l/Z,j+l/2 (37)

(DN)jj = AX

2 2 2 2
n N1z 412 = Mgz j—172 = Mio12j—172 T N_1/2, 4172 (38)
Ay ’

The node-based Heaviside functidaﬁ‘ff/ez’ i+1/2 is defined as the average of the four
surrounding cell-based Heaviside functions:

H(dir1) + H(di;) + H(@irrj+1) + H(@i
Hirff/ez,j+1/2= (Piv1j) (@i.j) 4(¢+1,J+1) (¢,J+1)_ (39)

3.4. Discretization of the Projection

In this section we describe the discrete “approximate projectiBn vhich is used in
(17).7P is an approximation to the projection operaodescribed in (10). We remark that
a detailed description of the approximate projection is given by [5].
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Given the discrete vector field

u* —u"
) 40
At (40)
we decompose (40) into approximatelydivergence-free part
Un+l —_yn
_ 41
At (41)
and the discrete gradient of a scadadivided by density
(Ga)jj
v (42)
ij
where the discrete gradie@tin (42) is defined in (33).
The approximate projection is computed by solving
u*—u"
L,a=D 43
a=0("5>) @3)

for . The right-hand side of (43) is an approximatiorMeV found in the right-hand side
of (8). The discrete divergendaU is

Uit + Uit j+1 — Ui j — Ui j+1
(DU)iy1/2, 412 = . . : :
|+/ ,]+/ AX
Vitlj+1 — Vi4l,j — Vi,j + Vi j41
+ —— T (44)
Ay

The left-hand side of (43}, ,q, is an approximation t& - (1/p)V p found in the left-hand
side of (8). The discrete representatioriLgf is

(Lo®ir1/2,j+1/2

pi_in(ZQi ~12,j-1/2 + Gi+1/2,j-1/2 + G172, j+1/2 — 40i+1/2,j+1/2)

1 + pi'jlﬂ (20i—1/2,j+3/2 + i1/2,j+3/2 + Qi—1/2,j+1/2 — 4hi+1/2,j+1/2)
ah2
6h + pi+11.j (201 43/2,j—1/2 + Giv1/2,j-1/2 + Qiv3/2,j+1/2 — 4hi+1/2,+1/2)
Wl.,ﬂ (201 +3/2,j+372 + Oiv1/2,j+3/2 + Qiv3/2,j+1/2 — 412, +1/2)
(45)
In two dimensions the operattr,q (45) is derived from the variational form of (8),
1 u* —u"
=VaX) - Vi (x) dx = A Vi (x) dx Y (x), (46)
1)

wheredx is the volume elemendx dy,r dr d6, or dx dy dz as appropriate. The finite
element basis functiong (X) represent standard piecewise bilinear functions. In three
mensions we use a standard seven-point approximation in order to detve
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After (43) is solved, we fornfU™* — U")/At,

Un+l _ Un U* — Un Gq
At = At - pn+l/2’

(47)

and pn+1/2,
pn-+—1/2 — pn—1/2 +q.
Remarks. e The discrete projection step presented here is slightly different from tt
continuous analogue presented in Section 2.1 because we are solvingddfetencein
pressure = p"t1/2 — p"~1/2 instead of the actual pressypé+l/2,

e The discrete projection operat®® is called an approximate projection because the
discrete divergence of (41),

Un+l —_yn
PO a0 s <48>
i+1/2,j+1/2

is notidentically zero. In order to see why (48) is not necessarily zero, we apply the disci
divergenceD to both sides of (47) in order to arrive at

yrtt—yn U*—u" 1
G R Ll G| O -
At i+1/2,j+1/2 At i+1/2,j+1/2 p i+1/2,j+1/2

(49)

The discrete operatdd(1/p"*Y/?)Gq is not the same ak,q, which means (48) is not
necessarily zero.

3.4.1. Matrix solver. In order to compute the approximate projectiBnwe solve (43)
for gi+1/2, j+1/2. We use the multigrid-preconditioned conjugate gradient method (MGPC(
[48] for solving (43).

The boundary conditions for (43) are homogeneous Neumann at a solid wall or at an
of symmetry. The boundary conditions at outflow boundaries are homogeneous Dirich

In preliminary development, we attempted to use standard multigrid techniques to sc
(43). These standard multigrid techniques used the coefficigptmdefining the interpo-
lation operator [3, 1], but would not converge for many problems with high density ratic
As an example, for an axisymmetric bubble rise problem with no surface tension, stanc
multigrid took an order of magnitude more iterations than MGPCG at the point near bub
breakup.

As aresult, we have implemented the multigrid-preconditioned conjugate gradient met
[48] to solve (43). This allows us to run the bubble and drop problems that previously fail
at the proper density ratio (816:1).

The preconditioner is a single multigrid V-cycle [51] with the following properties
motivated by the need for the preconditioner to a conjugate gradient solve to be symme

e The interpolation and restriction operators have no coefficient-weighting and sati
cR" = |; Rrefers to the restriction operator ahdefers to the interpolation operator.
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e Symmetric multicolor Gauss—Seidel relaxation is used as the smoother at each le\
the V-cycle. For the nine-point stencil in two dimensions, we use a four-color Gauss—Se
relaxation step. On the way down the V-cycle, the order is RBGW. On the way up, the o
is WGBR. Likewise, for the three-dimensional seven-point stencil, we use a multicolo
relaxation scheme in which the ordering is again reversed on the way up the V-cycle.

o Atthe coarsest level of the V-cycle, the “bottom solver” is a preconditioned conjug
gradient solver. The preconditioner for this bottom solver is again symmetric multicc
Gauss—Seidel relaxation as described above; i.e. RBGW on the way down the V-cycle
WGBR on the way up. The equation at the coarsest level must be solved to a toleranct
orders of magnitude smaller than the tolerance of the overall conjugate gradient solve
the multigrid as preconditioner will not be sufficiently symmetric.

o If the boundary conditions are all homogeneous Neumann, discrete solvability is
forced by ensuring that the sum of the right-hand side of (43) is zero.

e The elliptic operator at each level of the V-cycle is identical in form but with coarser
coefficients from the finer levels. The coefficienfalare each associated with a directiona
flux and are coarsened by doing an arithmetic average transverse to each “flux” a
harmonic average parallel to the flux; we refer the reader to [3] for details of this proced

3.5. Interface Thickness

We shall give the interface a thickness as was done in the work of [50, 45]. Numeric:
we substitute the smoothed Heaviside functlen¢) for the sharp Heaviside function
H (¢). The smoothed Heaviside function is defined as

0, if p < —¢,
He(@) = < 2[1+ 2 + Lsin(rg/e)]. if ] <e, (50)
1, if ¢ > e.

Assume thad represents the signed normal distance to the free surface /Zlo@ttour of
the sharp Heaviside functidd (¢) will show up on a contour plot with jagged or staircas
contours. Althoughy is smooth,H (¢) has a jump at the zero levelset. A contour plot o
H:(¢) wheree =aAx will not show up having a jagged shape whes- 1. By giving
the interface a thickness ot 2ve eliminate problems when solving (43) and also whe
discretizing the surface tension term

1 k(@) VH (@)
W o)

In our algorithm, the front will have a uniform thickness which means we require that
level set functior represent the signed normal distance to the free surface; in other wo
¢ is a distance function. It is clear that we can chogse, 0) to be a distance function;
however, under the evolution of (2) it will not necessarily remain one.

In order to maintai (X, t) as a distance function, we must be able to solve the followir
problem: given a level set functias(x, t), reinitialize it so that it is a distance function for
|¢| < & without changing its zero level sékhis is achieved (see [45, 43]) by performing
the following steps:

1. d(x,0) =¢(x, t).
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2. Fort=0...¢solve

ad

P S(@)(1—[Vvd)), (51)
where
-1, if¢ <0,
S(¢) =<0, if¢=0, (52)
1, if¢ >0,

andr is an artificial time.

3. ¢ (X, t)=d(x, ¢).
The steady solutions of (51) are distance functions. Furthermore Sidce: 0, therd(x, 7)
has the same zero level setfa, t).

We only need to solve (51) far=0- - - ¢ because the level set function is reinitialized
near the front first. To see this we rewrite (51) as

d. +w-Vd = §(¢), (53)
where
vd
W= S(¢)w-

It is evident that (53) is a nonlinear hyperbolic equation with the characteristic velociti

pointingoutwardsfrom the interface in the direction of the normal. This meansdhatil

be reinitialized tgVvd| = 1 near the interface first. Since we only need the level set functic

to be a distance function near the interface, it is only necessary to solve (533for- - ¢.
The time-stepping procedure for the redistance equation (51) is based on the second-

Runge—Kutta method. At the beginning of each iteration we are gityet “time” z¥. We

then have

d“® = d* + AzL(dY), (54)
gl — gh@ 4 % (Ld®) + L (d*®)). (55)

At is chosen to be\x/2; Ax/2 satisfies the CFL condition for (53) sinps| < 1. L(d)
represents the discretization of the spatial t&i) (1 — |Vd|). L(d) is defined as

L(d) = Sax(#) (1 — 1/ (Dxd)? + (Dyd)?), (56)

whereSxx(¢) is a smoothed sign function,

Sax(¢) = 2(Hax(¢) — 1/2), (57)

andDyd, Dyd are approximations tdd/dx andad/dy, respectivelyD,d is defined as

AX
(Dxd)h = D;dij + 7m(D;‘Dx‘dij R D;D;difl’j) (58)



ADAPTIVE LEVEL SET IN TWO-PHASE FLOW 95

AX
(Dxd)f} = Djdij — 7m(Dj{ Dy dij, Dy Dy i) (59)
w® = (Dxd)} S(¢) (61)
(Dxd)i'], if wt>0andwt + wR >0,
(Dxd)ij = (Dxd)i'?, if wR <0andw" + wR <0, (62)
0, if wt < 0andw® > 0.

The functionm(a, b) and the difference operatoBs_ andDy, found in (58) and (59), are
defined as

M@ b) a, ifla] < b, (63)
"7 1b, otherwise
dij — Gi_y|
Dy dij = IJTXILI’ (64)
D dij = % (65)

Analogous formulas as fdD«d are used to approximatel /9y andad/dz. The discre-
tization described above f@d corresponds to a second-order essentially nonoscillatc
(ENO) scheme described in detail by [42, 23].

We use an improvement to the redistance step which was developed in [43]. We inte
the term,S(¢), in (51) as a “constraint” used both to prevent the interface from moving a
also to implicitly prescribe boundary conditions at the interface. For discretization purpc
we wish to enforce another constraint: the volume filled by each fluid must stay cons
when the redistance step is applied. For each grid @gl|,we define volume as

Vi = / H (d*) dx, (66)
Qjj

whereH is the Heaviside function described by (2) affds the value ofi at ¥, the “time”
after thekth iteration in the redistance step.

Because volume should not change, we should N‘#ve Vi?. Nevertheless, if the redis-
tance step slightly changes the location of the zero level set, we then havé ~far® =
Oo(AXx),

dH, (d°
Vi =W & (r - 1% d( ) dx
Qij T
~ / H!(d%)(d* — d° dx, (67)
Q.

ij
where
if |d| > e,

0,
68
) {%[i + Lcosnd/e)], if |d] <e. (68)
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In order to minimize volume variation, we project the current values of the level set functic

denoted asff, onto new values, denoted @, which satisfy

/ H/(d%d* — d% dx = 0. (69)
Qijj

If (69) is satisfied then by (67) the volume change will be very small. To implement th
projection we assumd;’j has the form

dff = df + aij (r% — % H/(d?), (70)

where;; is assumed constant i . After substituting (70) into (69), we have

_‘[QH Hg(do)(dk—dfj)dx

‘L'kf‘f
ij =

Jeo, (HL(d9))*dx

(71)

Equation (71) is discretized in each cell by using a nine-point stencil to perform the in
gration. Since.;; is assumed constant in each cell, the above equation can be solved t
explicitly and quickly. The projection step given by (70) is applied after each redistan
iteration. In the work of [43] it was shown that the above constraint helps the level :
function converge to a distance function while still maintaining the original zero level se

3.6. Initialization of the Data

Specification of the problem must include values@oand¢ at timet® =0 and values
for the initial pressurep at timet?/2. The pressure is not initially prescribed and must be
calculated in an initial iterative step.

To begin the calculation, the initial velocity field is first projected to ensure that it satisfi
the divergence constraint &t=0. Then an initial iteration is performed to calculate an
approximation to the pressure tat= At/2. If this process were iterated to convergence
and the projection were exact, theit =U* in the first step, because the pressure use
in Eq. (16) would in fact bep'/?, not p~Y/2. However, in practice we typically perform
only a few iterations, since what is needed for second-order accuracy in Eq. (16) is on
first-order accurate approximation pd+%2, which in a standard time step is approximatec
by pnfl/zl

In each step of the iteration we follow the procedure described in the above subsecti
In the first iteration we us@~1/2=0. At the end of each iteration we have calculated ¢
value ofU?! and a pressur@'2. During the iteration procedure, we discard the value o
U?, but definep~/2 = p'/2. Once the iteration is completed, we use the valupdf? in
Eq. (16) along with the values &f° and¢°.

4. ADAPTIVE MESH REFINEMENT

In this section we present the extension of the single-grid algorithm described ab
to an adaptive hierarchy of nested rectangular grids. The basic adaptive framework i
described by Almgreet al.[3].
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FIG. 2. Diagram of grid structure used in adaptive mesh refinement (AMR). In this example there are ti
levels. Level 0 has one 1616 grid. Level 1 has two grids; a 616 grid and a 8 14 grid. Level 2 also has two
grids; a 16x 20 grid and a 16« 12 grid. The refinement ratio between levels in this example is 2.

In Fig. 2 we show an example of the grid structure used in adaptive mesh refiner
(AMR) [6, 11, 10, 33]. The grid hierarchy is composed of different levels of refineme
ranging from coarsest,= 0, to finest{ = £ax. The coarsest levet,= 0, covers the whole
computational domain while successively higher levels,1, lie on top of the level under-
neath them, levef. Each level is represented as the union of rectangular grid patche:
a given resolution. In our computations the refinement ratio between levels is 2. Thu:
haveAx‘tt = Ay**1 = Az+1 = 2 Ax‘. The grids are properly nested, in the sense that t
union of grids at level + 1 is contained in the union of grids at lewefor 0 < £ < ¢max-
Furthermore, the containment is strict in the sense that, except at physical boundarie
level ¢ grids are large enough to guarantee that there is a border at least orfeciealide
surrounding each levél+ 1 grid.

The initial creation of the grid hierarchy and the subsequent regridding operation
which the grids are dynamically changed to reflect changing flow conditions use the s
procedures as were used by Batlal.[6] for hyperbolic conservation laws. In the problems
we compute here, we shall “tag” cells which contain part of the gas/liquid interface,
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those in which the level set function changes sign. For some problems, in order to gene
the finest level of refinement, we require not only that that cells contain the interface,
also that the curvature in those cells exceed a preset threshold in order to be “tagged.” (
cells on a specified level are “tagged” for refinement, the grids at the next higher level
be constructed. The tagged cells are grouped into rectangular patches using the clust
algorithm given in Berger and Rigoustsos [12]. These rectangular patches are refine
form the grids at the next level. The process is repeated until either the error tolera
criteria are satisfied or a specified maximum level is reached.

At t =0 the initial data is used to create grids at level 0 throtgdr. Grids have a user-
specified maximum size; therefore, more than one grid may be needed to cover the phy
domain. As the solution advances in time, the regridding algorithm is called ksteps,

k is a user-specified parameter, to redefine grids at levelsthsioLevel O grids remain
unchanged throughout the calculation.

When new grids are created at level 1, the data on these new grids are copied fron
the previous grids at level+ 1 if possible; otherwise they are interpolated in space fror
the underlying level grids. We use conservative interpolation for cell-centered variable
U and¢ [38] and bilinear interpolation for pressure.

We note here that while there is a user-specified limit to the number of levels allow
at any given time in the calculation there may not be that many levels in the hierarchy;
¢maxcan change dynamically as the calculation proceeds, as long as it does not excee
user-specified limit.

4.1. Overview of Time-Stepping Procedure

An important distinction between the adaptive algorithm presented in this paper and:
presented in [3] is the fact that we do not use a “subcycling” timestep procééuaher
words, the data on the coarsest levels is advanced with the same timestep as the de
the finest level. The timestep for each leve’ is the same as the timestep on the fines
level Atfmx. The procedure to advandg and¢ on levels 0 thruyay is similar to the
Crank—Nicholson procedure presented for the single grid discretization 3.1:

1. Level set update fap" 1. For levels 0< £ < £max,
¢n+1,£ — ¢n,£ _ Atl[U . V¢]n+1/2,£' (72)

The evaluation of the nonlinear advection tefth- V¢]"+1/%¢ requires that we apply the
MAC projection (27) on all levels simultaneously. Details of the composite MAC projectio
are presented in Section 4.2.

2. Semi-implicit viscous solve for the intermediate velodity . For levels 0< £ < £may,
we solve (16). Details of the composite viscous solve are presented in Section 4.3.

3. Projection step folu" 1. For levels 0< £ < £max We solve (17). Details of the com-
posite projection step are presented in Section 4.4.

4. Composite redistance operation on levels ¢ < ¢,y Details of the composite re-
distance step are presented in Section 4.5.

As in the adaptive mesh technique for hyperbolic systems, the extrapolatibarmd o
to the cell faces at"t1/2, as described by (20) thru (23), can be performed one grid at

3 However, we do use a “subcycling” timestep procedure for the composite redistance step; see Section 4
details.
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time, with boundary data copied from other fine grids, interpolated from underlying coe
grids, or supplied from physical boundary conditions. The composite MAC projecti
composite viscous solve, and composite approximate projection require that the solutic
computed on all grids at a level at one time, since these are no longer explicit operat
Boundary data for these solves are interpolated from underlying coarse grids or sup
from physical boundary conditions. The interpolation and solution procedure for th
equations are discussed in Sections 4.2, 4.3, and 4.4.

4.2. Composite MAC Projection
The composite MAC projection consists of the following steps:
1. Average down unprojected face centered velocities (26) and density=fdtnax —
1...0,
untr2e — If+1U”+l/2’€+l

n,¢

L _ 1t n,¢+1
o= |£+1/O .

The operatot /, , represents the averaging down of le¢et 1 data onto levet data. The
equations for averaging down face-centered velocities and density are

1
¢ 011 041
U_1pj = E(UZitl/Z,Zj + U2i+71/2,2]+1) (73)
1
¢ 0+1 0+1
Vij-12= 5 (va'2j 12 + vaita2_12) (74)
L +1 +1 +1 +1
pij = Z(Pzifzj + Paitio) + P21 + PA12)41)- (75)

Analogous equations are used for three-dimensional problems.
2. Perform a single level MAC-project on each level §6£ 0- - - £ax

1
pDMAC (WGMAC pMAC.K> — DMAC yn+l/2¢)

on
ADV.¢ _  n+l1/2.¢ 1 MAC MAC,¢
Uivt2 = U2 — o (G*“p )i+1/2,j
Pit1/2,]
aDv.e _ nitj2e 1 MAC MAC,¢
Uij+1/2 = Vi j+1/2 e (Gy™p )i,j+1/2'
Pi.j+1/2

Remarks. e The solver for a single level MAC-project is the same as that described
a single grid MAC-project (27) except that on each level, we have to solve over a collec
of grids. Also, Dirichlet boundary conditions for pressure have to be specified at boundz
between levelg and¢ — 1.

e Minion et al. have presented a multigrid-based composite MAC projection algoritt
in [33] for constant density problems. They solve over all levels simultaneously. For
problems, in which the density ratio is 816:1, we have had convergence problems L
only multigrid for (43); thus we resort to solving a level at a time using the multigr
preconditioned conjugate gradient method and then synchronizing kexdds - - £ax @S
described in the next step.
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3. Synchronize newly MAC-projected edge velocities to be discretely divergence-ft
across coarse-fine grid boundariesfet £max— 1---0

UADV,Z _

14 ADV,(+1
- IZ+1U

1
DMAC(WGMAC ﬁMACv‘> = DMAC(UAPY.6)  (“MAC-synchronization’)

GADV.C _ ADV.E 1 (Glac ghac.e)
iv1/2j = Uiz — e —(Gx P i+1/2,]
i+1/2,]

~ADV.,t _ _ADV.¢ _ 1 MAC xMAC,¢

Vij+1/2 = Yi,j+12 7 "7 (Gy*-p )i,j+1/2
Pi j+1/2

correctt __ GADV,Z _ uADV,L’

i+1/2,j — Yi+1/2,j i4+1/2, ]

correct¢ __ ~ADV ¢ ADV,¢

Vi,j+1/2 = Vij+172 = Vi j+1/2>

fore/ =¢0+1---Lmax

~ADV.0

~ADV, ¢/
U

U + |ZZ’Ucorreth.

Remarks. ¢ Homogeneous Dirichlet boundary conditions f8fA¢-¢ are enforced at
boundaries between levelsand? — 1.

e The only contribution to the right hand side of the “MAC-synchronization” step wil
be at cells on the immediate coarse grid side of the boundaries separatind leveksnd
£. This is because the averaging down procedure for the face-centered velocities (73,
preserves the discrete divergence free property; iBMCUAPY-¢+1 = 0 then we also have
DMAC UADV,Z =0.

e The interpolation operatdy’ also preserves the discrete divergence free property. Ti
equations for interpolation are described for the case wher? + 1 as

0+1 ¢
Ui Z1/2.2) = Ui—1/2,j (76)
0+1 ¢
Uoi ™12 0j41 = U_12,] (77)
1
041 ¢ ¢
U 1/02j = é(uifl/z,j + ui+1/2,j) (78)
UsY o pig = }(u-z U ) (79)
2i+1/2,2j+1 — 2 i—1/2,j i+1/2,j )"

Analogous equations are used for the other velocity components and also for thi
dimensional problems.

o If the resulting corrected fine grid velociti€d™®’ ™ are averaged down onto level
¢, there will be no change i6”®""*. Furthermore DMACG*®"-* — 0. This is because our
averaging operatdr/ 41 and our interpolation operatof preserve the discrete divergence.

e In all of our computations the ratio ¢t ||, to |[UAPY-¢||, is less than 10°. This
is because we have averaged down the unprojected MAC velocities prior to our compc
solve. This is only possible since we do not use a “subcycling” time step procedure (
Section 4.5 for outline of the “subcycling” time step procedure).
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e In our computations shown in Fig. 8, the synchronization procedure took 5% of
total CPU time and the full composite MAC project procedure, including the synchroni
tion procedure, took 32% of the total CPU time. The synchronization procedure toc
comparable amount of time for all of our other computations too.

4.3. Composite Semi-Implicit Solve

In this section we describe how we solve (16) over multiple levels. The composite se
implicit solve consists of the following steps:

1. Average down the time centered densityfef £y — 1---0

n+1/2.6 _ ¢

n+1/2.6+1
e+1P :

0

2. On each level, form the right-hand side of (16), excluding the viscous terms,
£=0--. Kmax

V28 — gt At —[(U - v)UTHY2E Gpl2t  mrthRt F
a phti/2.L P12

3. Average dowV/" Y24 for £ = fpax—1---0

N+1/2,6 _ & \yn+l/2,e+1
Y =15,V :

4. Perform a single level semi-implicit viscous solve (16) on each level, solvirgfor
fOrEZO' . 'gmax

E*,(i + £n,€

*,4
U™ —at 2pntl/2t

= VM/2¢  (“Single-level viscous solve”

5. Average dowrJ** for £ = max— 1---0
U*,K — If+1u*,e+l'

The issues in solving the “single level viscous solve” as opposed to a single grid visc
solve (16) are described in detail in Section 3.5 of [3]. The boundary conditioks foare
homogeneous Dirichlet at a solid wall and homogeneous Neumann at outflow bounde
At a coarse—fine grid boundary, i.e. the boundary separating leagld?¢ — 1, the solution
is specified by quadratic interpolation from the coarser level. Here we address the
additional issue, that of how to provide boundary conditions for a nine-point stencil in t
dimensions rather than the five-point stencil. The extension to three dimensions foll
analogously. The difficulty here is in how to define the value at each corner point of
stencil when that point lies outside the fine grid.

There are three possibilities for the corner ghost cell: (1) it lies in another fine g
in which case the value is supplied by the other fine grid; (2) it lies outside the phys
boundary, inwhich case the value is supplied by the physical boundary conditions; or (3
value must be interpolated from the coarse grids. The interpolation scheme for such ¢
cells is described in detail in [3] when the ghost cell is aligned with a row of fine grid cel
such as is always the case with a five-point stencil and is the case for the nine-point st
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except at the corner of the grid. At the fine grid corners, rather than interpolate between
grid and coarse grid points along a diagonal, the ghost cell value is filled by extrapolat
from ghost cell values along one of the edges intersecting that corner.

4.4, Composite Approximate Projection

In this section we describe how we compute the approximate projection (17) over multi
levels.

SinceU** and p"*+%2¢ were averaged down in the “Composite Semi-Implicit Solve’
(Section 4.3), we do not need to average down these quantities prior to the compc
approximate projection. The composite approximate projection consists of the followi
steps:

1. Perform a single level approximate projection step (17) on each level, solving
n+1,¢ —
U for£=0-- lmax

Ur‘l+l,[ _ Ur‘I,Z U*,l _ Un,Z . ) ) ) .,
— - P At (“single-level approximate projection

2. Average dowU" % for £ = ¢pax—1---0

n+1¢ _ ¢ n+1¢+1
UMl =1t U .

Remarks. e The “single level approximate projection” is the same as the single gr
approximate projection described in Section 3.4.1, except that on each level we must s
over a collection of grids. Also, Dirichlet boundary conditions for pressure have to |
specified at boundaries between leg@ind level? — 1.

e Projecting on each level individually is contrary to the elliptic nature of the governir
Egs. (3) and (4). That is to say, the solution on coarse grids depends not only on Ic
conditions, such as would be the case if one were solving purely hyperbolic equations,
also on nonlocal conditions, such as data lying underneath fine grids. In our implementat
we advance all levels with the same timestep; this allows us to averaggdéwau™ ‘) / At
prior to solving the projection equation. By averaging down prior to the projection equatic
we minimize the decoupling error generated by solving one level at a time. The ratio
[ucerTeete), to ||UY |, (see Section 4.2 for the definition pEI°™||,) was less than 16
for all our computations. In Sections 5.1.1 and 5.3, we did computations on both an adar
grid and a single uniformly fine grid; the adaptive results showed very good agreement v
the single grid results.

4.5. Composite Redistance Step

In this section, we describe how to solve (51) on levets@< {ax. If € is the thickness
of our interface, then we solve (51) fe=0tot =«.

The procedure to advanckis a subcycling procedure; the fictitious time step on eac
level satisfiesAt¢ = Ax¢/2. We outline the procedure to advance the solution of (51) o
level ¢ from “time” t to time r + At*. This procedure is recursive with respect to refine-
ment level. Further details on subcycling are given in [3, 38, 10].
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ALGORITHM (Advance solution on level from “time” t to t + At?).

1. Advance solution on each lewegrid from ‘time’  to  + At*¢. Boundary conditions
for d are supplied from leved — 1 if £ > 0, and from the physical domain boundaries

2. Advance the solution on levél+ 1 from t to t + At*/2, then fromr + At%/2 to
T+ 2A1¢/2.

3. Average the solution from levéH- 1 onto levele.

We remark that the above “subcycling” procedure is a recursive procedure becau
order to advance the solution on leve} 1 above, one must recursively call the abov
algorithm again witt¢ replaced by + 1, and then again with+ 1 replaced by +2.. ..

5. NUMERICAL EXAMPLES

We present air/water computations on a two-dimensional axisymmeteg grid and
on a fully three-dimensional grid. We validate our method via convergence checks, di
comparison with other numerical methods, and comparison with experiments.

5.1. Convergence Checks

We measure the order of accuracy of our method by comparing the relative error bety
successively refined computations. The relative error is defined as

EM® = Z/Q [H(¢c(1)) — H(ot () dX, (80)
i] i

whereg, is the level set function from a coarser computation@n the level set function
from the refined computation. The integral in (80) is approximated by partitidRipmto
100x 100 rectangles and then applying the midpoint rule. The values ahd¢; at the
midpoint of each rectangle are obtained via bilinear interpolation.

We also measure the volume to check that volume conservation is attained as the g
refined. The volume is measured as

YOEDY /Q H($ (1) dx. (81)
i,j R

5.1.1. Inviscid gas bubble I.We compute the evolution of an axisymmetric rising in
viscid air bubble in water with surface tension. Inviscid gas bubbles have been stu
computationally by [40, 31, 13, 47]. As a remark, [40] also used AMR in their comg
tations of a shock-bubble interaction. In our first test problem, the density ratio is 81
and the Weber number is 200. In Fig. 3, we display the bubble at tire®0,t=1.2,
andt = 1.3. The spatial mesh size on the finest levehigm> = 6/512 and the interfacial
thickness parameter is= 3Ax‘m, The solid line represents results for the same proble
using the boundary integral method [44] with 240 points placed on the free surface. In o
to compare with the boundary integral method, we use far-field boundary condition:s
all sides of the domain except at=0; i.e., we assume that the pressure on the walls
p=mpmz/Fr.

In Table I, we show that the solution converges at a ra@ @-°) as progressively finer
levels are added. We also compared the adaptive results in whibt = 6/256 to the
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/]

[\

t=0,256x512 t=1.2,256x512 t=1.3,256x512

FIG. 3. Spherical gas bubble in liquid: density ratio 816:1, 3A200. Results computed using the adaptive
levelset method (thin contour) are compared to results computed using the boundary integral method (|
contour).

single grid results in whickhx = 6/256 over the whole domain. The difference betweer
these two computations it 1.3 is 0.0036 which is considerably less than the errors liste
in Table I. The speedup of the adaptive computation over the corresponding single
computation was 2.5.

In order to study the behavior of a rising gas bubble during a change in topology,
added an extra level of adaptivity only at regions of high curvature. The results for tl
computation are compared to the results without the extra level of adaptivity in Fig. 4.
depicted by Fig. 4, the bubble never pinches off. In fact, it appears that if we refined furt
and further, the bubble would never break; but the bottom surface would get arbitra
close to the top surface. We remark that the boundary integral method seems to indi
that the bubble should pinch off in finite time. But, the boundary integral method assun
zero density in the air. In the work of Best [13], they also show pinch off in finite tim
using the boundary integral method, but they retain an infinitely thin strip at the top of t
resulting toroidal bubble. This thin strip is very similar to the connecting line that we show
Fig. 4.

TABLE |
Convergence Study for W=200 andx=3 att=1.3

AXxtmax V(1.3) E(1.3) Order
6/64 4.09 N/A N/A
6/128 4.14 0.184 N/A
6/256 4.16 0.065 1.5

6/512 4.19 0.023 15
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t=1.40 512x1024

FIG. 4. Spherical, inviscid gas bubble in liquid; density ratio 816:1,23A200. For results on the left, an extra

t=1.40 2562512

level of adaptivity is added at region of high high curvature.
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5.1.2. Inviscid gas bubble Il.In this section, we compute the same problem as

Section 5.1.1, except that we set the Weber number to 10 instead of 200. In Fig. 5
display the bubble at times=1.7 andt =2.0. The spatial mesh size on the finest leve

is Ax‘max=6/512 and the interfacial thickness parametes is3Ax‘max, The solid line

represents results for the same problem using the boundary integral method [44] with
points placed on the free surface. As in Section 5.1.1, we use far-field boundary condif
on all sides of the domain exceptrat 0. In Tables Il and Ill, we show convergence result

att =1.7 andt = 2.0 when progressively finer levels are added.

TABLE Il
Convergence Study for W=10 andx=3 att=1.7

AXtmax V(1.7) EQ.7) Order
6/64 4.05 N/A N/A
6/128 412 0.233 N/A
6/256 4.15 0.083 1.5
6/512 4.17 0.029 1.5
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7]
—=)
=)

[\

t=0 256x512 t=1.7 256x512 t=2.0 256x512

FIG. 5. Spherical gas bubble in liquid: density ratio 816:1, 3/&0. Results computed using the adaptive
levelset method (thin contour) are compared to results computed using the boundary integral method (|
contour).

As in Section 5.1.1, we add an extra level of adaptivity only at regions of high curvatu
The results for this computation are shown in Fig. 6. By contrast with the resuité 6200
in Section 5.1.1, it appears from the refined results her&\fez 10 that the bubble will
pinch off no matter how much we refine the grid. In Table IV, we show the pinch-off tim
for successively refined computations of ¥ve= 10 case.

5.1.3. Zero gravity drop oscillation.In this section we compute axisymmetric zero-
gravity drop dynamics and compare these with the linearized drop oscillation solution:s
Lamb [29, Section 275]. The interfacial position of the drop is shown to be

X(0,t) = a+ eP,(cog0)) sin(wnt),

where

,  1nn-DHn+DH(n+2)

WS =
"W a3(n+1+npy/p1)

TABLE IlI
Convergence Study for W=10 andx =3 att=2.0

AXxtmax V(2.0) E(2.0) Order
6/64 4.06 N/A N/A
6/128 4.12 0.422 N/A
6/256 4.14 0.166 1.3

6/512 4.16 0.072 1.2
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TABLE IV
Convergence of Pinch-Off Time
forW=200anda=3

AXtmax Pinch-off time
6/64 2.439
6/128 2.007
6/256 1.912
6/512 1.919

t=1.94 t=1.98

t=1.84 t=1.88

FIG. 6. Spherical inviscid gas bubble in liquid; density ratio 816:1,3&0. Effective fine grid resolution
512x 1024.
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FIG. 7. Perturbation in minor amplitude for zero gravity drop oscillations=\&, R= 200, density ratio
100:1, viscosity ratio 100:1.

and P, is the Legendre polynomial of order. If viscosity is present, the amplitude is
proportional toe™"/*, where

._ R N+ (p2/p)(N + 1)
S @n+bhHnin—=D+M+D(N+ua/pr

This equation is derived following the approach outlined in Lamb [29, Section 355].
We compute the evolution of a drop wigh=1, 2/, =0.01, W =2, p,/p1 =0.01, and

R =200. The initial free surface is given (6, 0), with ¢ =0.05 andn = 2. With these

parameters we find, = 2.00 andr = 38.3. The fluid domainif2 ={(x,y) |0<x<2and

0 <y =<4} and the coarse grid size is 2448. We compare results as succeeding levels c

adaptivity are added. The interfacial thickness parametsi2Ax‘max, The results of our

computations are shown in Fig. 7, where we display the perturbation in the minor axis

varying levels of resolution. The average dimensionless period is 3.17 and the expe

linearized period isr. TheL! error between succeeding resolutions is measured as

/ [Xn (0, t) — Xon (0, t)] dt
0
and theL* error is measured as

Omtax|xh(0, t) — Xon (0, t)].

We display our computed errors in Table V.
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TABLE V
Convergence Study Zero Gravity Drop Oscillations W =2, Re =200, Minor Axis

AXtmax L, Lo Period Orderi )
4/48 N/A N/A 3.22 N/A
4/96 1.25E-3 3.04E-3 3.18 N/A

4/192 3.50E-4 6.89E-4 3.17 2.1

5.2. Comparison with Experiments

We compute the evolution of an axisymmetric rising gas bubble in a viscous liquid.
densityratiois 714:1 and the viscosity ratio is 6667:1. The Reynolds number, Froude nur
and Weber numberare 9.7,0.78, and 7.6, respectively. These are the same parameters
bubble experiments by Hnat and Buckmaster [25] and used in steady bubble computs
by Ryskin and Leal [41]. In Fig. 8, we show the free surface of the rising bubble. |
this problem, we have an extra level of adaptivity in the region of highest curvature
Fig. 9, we compare the volume of the bubble when computed with the extra adaptivit
opposed to without. In Fig. 10, we display the position of the center of mass of the bul

t=0.0 t=5.1 t=10.0

FIG.8. Rise of aninitially spherical gas bubble in viscous liquid. An extra level of adaptivity is automatica
added when corner forms in the ensuing cap bubble; density ratio 714:1, viscosity ratio 666% 4 /Ré/e= 7.6,
Fr=0.78.
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FIG.9. Plotofmass ofarising cap bubble vs time. Data corresponding tox12B” was computed in which
an extra level of adaptivity was added when the corner formed on the cap {ab@utFor data corresponding to
“64 x 256," an extra level of adaptivity was not added.

14 T T T T

T T T T T

"position” —;
13 0.991"x+3.723 —»~

position

3 1 1 1 1 1 1 1 1 i

0 1 2 3 4 5 6 7 8 9 10
time

FIG. 10. Plot of the center of mass of a rising cap bubble vs time. We compare this data with the linear k
fit for 2 < time < 10. Expected slope is 1.
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versus time. The average dimensionless rise speed for this case was 0.99 which c
from the experiments by 1%. We believe that some of the error in the computed st
rise-speed is attributable to the fact that we compute in a limited domain and use far-
boundary conditions. When our computation was run in a domain one quarter the size (
dimension cut in half) the average dimensionless rise speed was 1.03, a difference c
from the experiments. The advantage of adaptivity here is that enlarging the domain

cells only at the coarsest level; the fine grids covering the bubble remain the same size
time to run fromt =0 to 6.25 in the large domain,>620, was only 30% slower than the
cpu time used for the small domain, %8L0.

As a remark, our method has the capability of adaptinty the level set function for
additional levelsfymax < £ < £72X The level set equation (72) is solved on the addition:
levels using the subcycling procedure described in Section 4.5. In order to solve (72)
interpolate the face-based advection velocities (28) and cell-centered velocities in s
and time using bilinear interpolation. The composite redistance step remains unchat
except that it covers levels0¢ < 72X In Fig. 11, we show the free surface for a rising
viscous gas bubble; four levels of adaptivity are used in which only the level set func
is adapted at the last two levels. The last two levels of adaptivity are located at regior

t=0.0 t=5.3 t=10.0

FIG. 11. Rise of an initially spherical gas bubble in viscous liquid. Two extra levels of adaptivity for on
the level set function are automatically added when corner forms in the ensuing cap bubble; density ratio 7
viscosity ratio 6667:1, Re- 9.7, We=7.6, Fr=0.78.
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FIG. 12. Plot of mass of a rising cap bubble vs time. Data corresponding to x2B&4"” was computed in
which two extra levels of adaptivity for only the level set function were added when the corner formed on the ¢

high curvature. In Fig. 12, we compare the volume for the computation shown in Fig. 11
the results shown in Fig. 9. There is a 7% increase in computation time due to compu
the level set advection equation and level set redistance operation on the last two leve
adaptivity.

5.3. Impact of Drop on Water Surface |

We compute the impact of an axisymmetric water drop on a pool of water along w
the “splash” that comes afterward. With the level set method, we automatically han
the merge of the drop with the pool of water and also the breakup of the water splast
our computations, we use dimensionless parameters based on the impact \¢laoity
the radius of the drofh. In Fig. 17, we show results usirig=1 mm andU =4.0 m/s.

In Fig. 18, we show results using=1 mm andU = 7.6 m/s. The dimensionless impact
velocity is 1; we accelerate the drop with a fictitious gravitational force teffin 1/2 for

a total dimensionless time 2. At dimensionless tiree2, the drop will be traveling with
dimensionless speed of 1 and will have traveled a dimensionless distance of 1 (whic
the initial distance between the drop and the pool). Fet 4.0 m/s we have Re- 3518,
Fr=1633, and We=220. ForU = 7.6 m/s we have Re 6684, Fr=5895, and We=794.

As suggested by the difference in Weber number, the spray in the resulis=fet.0 m/s
(Fig. 17) coagulates more at the tip than the result&fer 7.6 m/s (Fig. 18).

We recomputed the drop impact problem on a single uniform finex1286 grid for
the case wheb) =7.6 m/s (Fig. 19). In Fig. 20, we compare the uniform fine grid result:
to the adaptive results. Although the internal memory savings for using an adaptive ¢
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was 4:1, the speedup was only 1.7. We believe that this is due to the elliptic solvers fo
approximate projection step and the MAC projection step. The elliptic solvers solve ov
collection of grids at each level. The multigrid preconditioner used by the elliptic solv
can only coarsen as much as determined by the smallest grid. On the bottom multigrid |
we must resort to a Gauss—Seidel preconditioned conjugate gradient method. Altern
elliptic solvers [33, 26] solve on all levels simultaneously, thus avoiding the limitation :
for the bottom multigrid level. Unfortunately, these solvers are based on a straight multi
method, in which we have experienced convergence problems for air/water flows
changes in topology.

5.4. Impact of Drop on Water Surface I

We compute theimpact and subsequent bubble entrainment of an axisymmetric watel
on a pool of water. In the work by Oguz and Prosperetti [36], the boundary integral met

t=1.78 t=2.01

t=1.24 t=1.48

FIG. 13. Rise of inviscid air bubble in water; \We 200, effective fine grid 64 64 x 128.
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t=1.48 t=1.48

t=1.24 t=1.24

FIG. 14. Spherical gas bubble in liquid; density ratio 816:1; WR00. Left: Cross section of three-
dimensional result§y =2, x-z plane), effective fine grid 64 64 x 128, dimensions of domain: ¥4 x 8.
Right: Axisymmetric results, effective fine grid 32128, dimensions of domain:28.

was used to study the impact of drops on liquid surfaces and the subsequent entrainme
an air bubble. We shall compare our results to those found in Fig. 2 of the work by Oc
and Prosperetti [36]. The initial drop radiuslis=1.9 mm and the drop impact velocity
isU =1.53 m/s. The dimensionless parameters for this problem are 50, Fr= 126,
and We=61. For our computations, the dimensionless size of the domains2D) the
effective fine grid resolution is 128 256, and the interfacial thickness parameteris 2=,

As opposed to the computations done by [36], we do not initialize our computation w
the drop already connected to the pool of water; instead we accelerate the drop tow
the pool of water until it reaches the appropriate speed. The times in our computations



ADAPTIVE LEVEL SET IN TWO-PHASE FLOW 115

t=1.2 t=2.0

FIG. 15. Nonaxisymmetric merging of two viscous gas bubbles, effective fine grid ®4x 128.

relative to the impact time of the drop hitting the pool of water. We display our results
the drop impact and subsequent entrainment in Figure 21 which is in very good agree
with the results in [36].

5.5. Collision of Drops

We compute the impact of two axisymmetric drops. The drops are initially driven towa
each other by the force

1 .
f,= 5(0 = p2) SigNz — o) (82)
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t=0.8

FIG. 16. Nonaxisymmetric merging of two inviscid gas bubbles, effective fine grigt 64 x 128.

fort=0---1; p, is the density of the gas arrd is the point midway between the drops.
The centers of the drops are initially two diameters apart. The parameters we use for
problem arep1/p2 =15, p1/u2 =350, W=32, and R=98. These parameters corresponc
to the simulation done by Nobagt al.[35] in Fig. 17 of their paper. For this test problem,
the Weber number and Reynolds number are expressed as

W= PldUZ’ R

o M1

whered is the drop diameter and is double the speed of each drop. Time is scaled b
2d/U. In Fig. 22, we show our computation of the colliding drops in which the domai

_ pUd

)
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t=0.0 t=2.4

FIG. 17. Falling 1-mm spherical water drop onto pool of water; density ratio 816:1, viscosity ratio 71
128x 256, impact speed =4.0 m/s.

size is I2x6 and the effective fine grid resolution is &R56. As in [35], time is set to
zero when the drops are one diameter apart. We remark that our results do not agree e
with those of [35] because our drops are allowed to “rupture” immediately, whereas
computations of [35] “rupture” at=0.4.

5.6. Fully 3D Simulations of Single Rising Gas Bubble

In Fig. 13, we show the computation of the rise of a fully three-dimensional inviscid
bubble in water. The density ratio is 816:1 and the Weber number is 200. The dimens
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t=3.5 t=5.4

[]]

t=0.0 t=2.4

FIG. 18. Falling 1-mm spherical water drop onto pool of water; density ratio 816:1, viscosity ratio 71::
128x 256, impact speed =7.6 m/s.

of the domain are 4 4 x 8 and the effective number of computational cells on the fine:
level of adaptivity (the third level) is 64 64 x 128. We use far-field boundary conditions
on all sides of the domain. In Fig. 14, we display a cross-section of the bubte B4
andt = 1.48 and compare these results with the results of an axisymmetric bubble probl
in which the effective fine grid resolution is 32128. We point out here that we do not have
to do any extra programming in transitioning from a spherical cap bubble into a toroic
bubble.
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t=0.0 t=2.4

FIG. 19. Falling 1-mm spherical water drop onto pool of water; density ratio 816:1, viscosity ratio 71
128x 256, impact speed = 7.6 m/s. Adaptive mesh refinement turned off.

5.7. Fully 3D Simulations of the Nonaxisymmetric Merging of Two Bubbles

For these problems, we start off with two gas bubbles whose centers are offsetxii the
direction by one bubble radii and offset in th# tlirection by 2.3 radii.

In Fig. 15, we display the interaction of two viscous gas bubbles in liquid. The den:
ratio is 20:1 and the viscosity ratio is 26:1. The dimensionless parameters we use fol
problem are W= 50, Fr=1, and R= 50"4. These parameters correspond to Fig. 12 in [50
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7.6 m/s. Comparison between adaptive results on the left and uniform fine gr
6. CONCLUSIONS

5.4
FIG. 20. Falling 1-mm spherical water drop onto pool of water; density ratio 816:1, viscosity ratio 71::

128x 256, impact speed

results on the right.
In Fig. 16, we display the interaction of two inviscid gas bubbles in water. The dens

ratio is 816:1. As in the previous case, the dimensions of the domain-a#ex48 and the
effective number of computational cells on the finest level of adaptivity (the second lev
is 64 x 64 x 128. We use free-slip boundary conditions on all sides of the domain.

An adaptive level set method has been presented for computing free surface flow

which large jumps in density and viscosity occur at the free surface. Surface tens
forces are included in the numerical model. Adaptive mesh methodology is used to fo

t

The dimensions of the domain arex4 x 8 and the effective number of computational
cells on the finest level of adaptivity (the second level) is<@H x 128. We use free-slip
in [50]. We attribute the difference, in part, due to the fact that our bubbles were initia

boundary conditions on all sides of the domain. Our results agree qualitatively with the
offset by different values than were the bubbles in [50].
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”f}

t=20.4 t=22.1 t=22.5 t=23.5

/ i

t=1.3 t=4.4 t=16.9 t=18.7

FIG. 21. Falling 1.9-mm spherical water drop onto pool of water; density ratio 816:1, viscosity ratio 71
128x 256, impact speed =1.53 m/s.

t=0.1 t=1.1 t=2.2 t=3.2 t=4.3 t=>5.3 t=6.1

FIG. 22. Caollision of axisymmetric drops; R 98, W=232. Time is set to zero when two drops are one
diameter apart. Effective fine grid resolution is 6256.
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computational effort to regions near the free surface and in some cases focus additi
attention to regions of high curvature. Examples in two and three dimensions are showr
a wide range of Reynolds numbers and Weber numbers in which the arbitrary merging
breakup of fluid mass may take place. We have validated the adaptive level set method ag
the bubble experiments of Hnat and Buckmaster [25], drop computations by Oguz
Prosperetti [36] and boundary integral computations in Sussman and Smereka [44]. Fin
a convergence study has been conducted in order to measure the order of accuracy fi
problem of a rising inviscid air bubble in water and the problem of an oscillating droplet

The methodology presented here is currently being extended to the problem of oil spre
ing under ice [46]. This problem requires the fully implicit rather than semi-implicit trea
ment of the viscous terms, thereby eliminating the need for a viscous time step constr:
In addition, one must impose the contact angle boundary condition at the oil/ice/we
junction.

Future directions for this work include embedding the current algorithm in a framewo
capable of handling irregular geometries [4] and extending the algorithm to handle flc
with heat transfer and vaporization [28]. These are both necessary in order to model the
ink jet devices [2, 20], in which a vapor bubble “pushes” ink out of a jetting device. Finall
there are ongoing efforts to parallelize the adaptive incompressible flow algorithm, ba
on the existing block-structured data format.
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