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We present a numerical method using the level set approach for solving incom-
pressible two-phase flow with surface tension. In the level set approach, the free
surface is represented as the zero level set of a smooth function; this has the effect of
replacing the advection of density, which has steep gradients at the free surface, with
the advection of the level set function, which is smooth. In addition, the free surface
can merge or break up with no special treatment. We maintain the level set function
as the signed distance from the free surface in order to accurately compute flows with
high density ratios and stiff surface tension effects. In this work, we couple the level
set scheme to an adaptive projection method for the incompressible Navier–Stokes
equations, in order to achieve higher resolution of the free surface with a minimum
of additional expense. We present two-dimensional axisymmetric and fully three-
dimensional results of air bubble and water drop computations.c© 1999 Academic Press
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1. INTRODUCTION

In this paper we describe an adaptive level set approach for computing incompressible
two-phase flow in two or three dimensions. Our numerical method is designed for flows
characterized by large density and viscosity ratios at the free surface, e.g. air and water,
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and also includes the effects due to surface tension. Our method is also designed for flows
in which the free surface separating the two-phases is allowed to merge or break. Incom-
pressible two-phase flow algorithms have been used to model many applications, e.g. drop
impact on a pool of water [36], gas bubbles bursting at a free surface [14], ink-jet devices
[20], bubbles in a box [21], and water waves [24, 30, 16].

Existing computational methods used to solve incompressible two-phase flow problems
include front-tracking methods [50, 21, 49], boundary integral methods [36, 14, 30, 13],
volume-of-fluid methods [20, 39, 15], phase field methods [27], capturing methods [47],
and level set methods [45, 44, 17, 22].

All of the above methods have their strengths and weaknesses. An advantage of front-
tracking methods is that marker particles are introduced explicitly to keep track of the front.
This generally reduces by a considerable amount the resolution needed to maintain accuracy
comparable to front-capturing methods for the evolution of the free surface. However,
regridding algorithms must be employed with front-tracking methods in order to prevent
marker particles from coming together at points of large curvature; an explanation of the
necessity of regridding is presented in [37]. Another difficulty with front-tracking methods
is the fact that extra code needs to be added in order to reconnect for disconnect the free
surface separating fluids.

Volume-of-fluid methods are methods based on discretizing the volume fraction of one
of the fluids. The motion of the free surface is modeled by solving a conservation law for
the volume fraction. As a consequence [39], one can use a conservative finite difference
method to update the volume fractions and, except for errors that occur as a result of
numerical truncation, the volume of each fluid is conserved. Volume of fluid methods,
like level set methods, do not require special procedures to model topological changes of
the front. A disadvantage of volume-of-fluid methods is that it is difficult to calculate the
curvature of the front from volume fractions.

We shall use the level set approach [45, 37], coupled with incompressible adaptive mesh
methodology [3]. Although the level set method does not have the same conservation
properties as volume-of-fluid methods or front-tracking methods, the strengths of the level
set method lie in its ability to accurately compute flows with surface tension and changes
in topology. Furthermore, the level set method generalizes easily to three dimensions. As
opposed to front tracking or boundary integral methods, we do not have to add extra code
in order to reconnect or disconnect the interface separating fluids. Since we never have to
explicitly reconstruct the free surface from the level set function, we avoid complicated
front-tracking regridding algorithms or volume-of-fluid reconstruction algorithms. Finally,
we use the level set method because the method allows us to accurately compute problems
with surface tension. We use the continuum approach [17, 15] in order to represent the
surface tension force as a body force. The surface tension term and local interfacial curvature
are easily represented in terms of the level set function. In our implementation of the level set
method, the level set function will be maintained as the signed distance to the free surface,
thus curvature can be accurately computed from the level set function.

We combine the level set approach with the variable density adaptive mesh projection
method developed by Almgrenet al. [3]. Previous adaptive level set implementations have
been developed by [32] for computing motion by mean curvature and by [22] for computing
thermocapillary motion of deformable drops. We generalize the work of Almgrenet al. [3]
to incompressible two-phase flows in which the density and viscosity ratio between fluids
can be 1000:1. Adaptive mesh refinement (AMR) [11, 10] enables us to increase the grid
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resolution at regions near the free surface and additionally at regions near points of high
curvature.

2. GOVERNING EQUATIONS

We use the level set function,φ, for tracking the interface between the gas and the liquid
[37, 45, 44]. In our algorithm the interface,0, is the zero level set ofφ:

0 = {x |φ(x, t) = 0}.

The level set functionφ is positive in the liquid and negative in the gas. Hence we have

φ(x, t)


>0, if x∈ the liquid,

=0, if x∈0,

<0, if x∈ the gas.

(1)

The unit normal on the interface, pointing from the gas into the liquid, and the curvature
of the interface can easily be expressed in terms ofφ(x, t):

n= ∇φ

|∇φ|
∣∣∣∣
φ=0

, κ = ∇ ·
( ∇φ

|∇φ|
)∣∣∣∣

φ=0

.

Since the interface moves with the fluid, the evolution ofφ is given by

∂φ

∂t
+ u · ∇φ = 0. (2)

The governing equation for the fluid velocity and pressure,u and p, along with the free
surface boundary conditions can be written as

Ut = − ∇ p

ρ(φ)
− (U · ∇)U + 1

R

∇ · 2µD
ρ(φ)

− 1

W

κ(φ)∇H(φ)

ρ(φ)
+ F (3)

∇ · U = 0, (4)

whereD is the rate of deformation tensorD= 1
2(∇U+∇UT), F is the gravitational force,

ρ andµ are, respectively, the density and viscosity, andH(φ) is the Heaviside function:

H(φ) =


0, if φ < 0,

1
2, if φ= 0,

1, if φ > 0.

The curvatureκ(φ) is defined as

κ(φ) = ∇ ·
( ∇φ

|∇φ|
)

.

We assume the density and viscosity are constant in each fluid, with valuesρ1 andµ1,
respectively, in the liquid, andρ2 andµ2 in the gas. We define the nondimensionalized
quantities

ρ(φ) = H(φ)+ (ρ2/ρ1)(1− H(φ)) (5)
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and

µ(φ) = H(φ)+ (µ2/µ1)(1− H(φ)). (6)

The dimensionless parameters used are Reynolds number, R= ρ1LU/µ1, Froude num-
ber,Fr=U2/gL and Weber number,W= ρ1LU2/σ .

The Navier–Stokes equations for two-phase flows were written in similar form and used
by Unverdi and Tryggvason [50]. The fact that the surface tension can be written as a body
force concentrated at the interface has been used by Unverdi and Tryggvason [50] and
Brackbill, Kothe, and Zemach [15]. The form we use here is due to Chang, Hou, Merriman,
and Osher [17].

2.1. Projection Methodology

The method used to solve for velocity and pressure is a variable density approximate
projection method described by [5, 39]. We rewrite (3) as

Ut + 1

ρ(φ)
∇ p = V(U, φ). (7)

We then take the divergence of both sides of (7) and use the fact that∇ ·Ut = 0 in order to
reduce (3) and (4) into a single equation for pressure,

∇ · 1

ρ
∇ p = ∇ · V. (8)

After solving (8) for∇ p the updated value forUt is

Ut = V −∇ p/ρ. (9)

For future reference, we define the projection operatorP as

Ut ≡ P(V). (10)

Combining (10) and (9) yields

∇ p/ρ = V − Ut ≡ V − P(V) ≡ (I − P)(V). (11)

3. SINGLE-GRID DISCRETIZATION

Our single grid discretization procedure for approximating (2) and (3) is based on the vari-
able density projection method described by Bellet al. [7], Bell and Marcus [9], Almgren
et al.[5], and Puckettet al.[39]. For the single grid discretization, we have uniform grid spac-
ing 1x=1y= h. The discrete velocity fieldUn

i, j,k and the discrete level set functionφn
i, j,k

are located at cell centers. The pressurepn−1/2
i+1/2, j+1/2,k+1/2 is located at cell corners. A diagram

of where the discrete variables are located in relation to the computational grid is shown in
Fig. 1.J represents the index of the computational cell closest to the top physical boundary.
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FIG. 1. Diagram of where the discrete variablesU, p, andφ are located in relation to the computational grid
and the physical boundary.

3.1. Temporal Discretization

The time-stepping procedure is based on the Crank–Nicholson method. At the beginning
of each time step, we are given the velocityUn and the level set functionφn at time tn.
We are also given the lagged pressure gradientpn−1/2. The densityρn= ρ(φn), viscosity
µn=µ(φn)and Heaviside functionHn= H(φn)are given at timetn since they are functions
of φn. We discretize (3) and (2) in time using the following steps:

1. Level set update forφn+1:

φn+1 = φn −1t [U · ∇φ]n+1/2. (12)

Here, the brackets [· · ·]n+1/2 mean the discrete version of the continuous operator. The
nonlinear advection term [U · ∇φ]n+1/2 is evaluated using an explicit predictor–corrector
scheme and requires only the available data attn. In Section 3.2, we give a description of
how [U · ∇φ]n+1/2 is formed. Onceφn+1 is obtained from (12), the following quantities are
updated:

φn+1/2 = 1

2
(φn + φn+1) (13)

ρn+1/2 = ρ(φn+1/2) (14)

µn+1/2 = µ(φn+1/2). (15)

2. Semi-implicit viscous solve for the intermediate velocityU∗:

U∗ − Un

1t
= −[(U · ∇)U]n+1/2− Gpn−1/2

ρn+1/2
+ L

∗ + Ln

2ρn+1/2
−M

n+1/2

ρn+1/2
+ F. (16)
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L is a second-order finite difference approximation to(1/R)∇ ·(2µ(φ)D),M is a finite dif-
ference approximation to(1/W)κ(φ)∇H , andGp is an approximation to∇ p. In Section 3.3
we give a description ofGp,L, andM. The nonlinear advection term [(U · ∇)U]n+1/2 is
evaluated using an explicit predictor–corrector scheme and requires only the available data
attn. In Section 3.2, we give a description of how [(U ·∇)U]n+1/2 is discretized. The density
ρ, viscosityµ, Heaviside functionH , and curvatureκ are constructed from the level set
function calculated at timetn+1/2 in the level set advection step (13). The lagged pressure
gradientGpn−1/2 and forceF are treated as source terms. Equation (16) when discretized
results in a coupled parabolic solve for all velocity components ofU∗. We use multigrid as
an iteration method for solving (16).

3. Projection step forUn+1:

Un+1− Un

1t
= P

(
U∗ − Un

1t

)
(17)

1

ρn+1/2
Gpn+1/2 = 1

ρn+1/2
Gpn−1/2+ (I −P)

(
U∗ − Un

1t

)
.

P represents the discretization of the projection operator (10). In Section 3.4 we give a
description ofP .

4. Redistance step forφn+1. We maintain the level set functionφ as the signed normal
distance to the free surface. In Section 3.5, we give a description of the redistance step.

3.1.1. Timestep.The timestep1t at time tn is determined by restrictions due to the
CFL condition, gravity, viscosity and surface tension [45, 15]:

1t < min
i, j,k

(√
W

(ρ1+ ρ2)

8π
1x3/2,

3

14
R

ρn1x2

µn
,

1x

|un| ,
√

21x

Fn

)
,

where

Fn =
∣∣∣∣−Gpn−1/2

ρn
+ L

n

ρn
−M

n

ρn
+ F

∣∣∣∣.
We note that, even though we handle the viscous terms semi-implicitly, we have still found
a need for the stringent timestep constraint. One reason for this, as pointed out by Almgren
et al. [3] and Minion [34], is the fact that viscous terms are not included in defining the
states used in the transverse derivatives. Here, since our flows are not dominated by viscous
effects, we choose to handle the viscous terms semi-implicitly in order to preserve a high
order of accuracy. In Section 5.2, we found that the percentage of time spent solving (16)
was 16%. In [46], flows involving oil and water were computed; since the viscosity of oil
is very large in comparison to water, the viscous terms were handled implicitly by [46] and
no viscous timestep restriction was necessary.

3.2. Approximation of the Advection Terms

In this section, we describe the discretization of the advection terms

[(U · ∇)U]n+1/2 (18)

and

[U · ∇φ]n+1/2. (19)
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The discretization of the advection terms in this algorithm is very similar to the discretization
used by [39, 3]. It is a predictor–corrector method based on the unsplit Godunov method
introduced by Colella [19].

In the predictor we extrapolate the velocityU and the level set functionφ to the cell
faces attn+1/2 using a second-order Taylor series expansion in space and time. The time
derivativeUt is replaced using (3) and the time derivativeφt is replaced using (2). For face
(i + 1/2, j, k) this gives

Un+1/2,L
i+1/2, j,k = Un

i jk +
(

1x

2
− un

i jk1t

2

)
Un

x,i jk −
1t

2
(v̂Uy)i jk − 1t

2
(ŵUz)i jk

+ 1t

2

(
−Gpn−1/2

i jk

ρn
i jk

+ L
n
i jk

ρn
i jk

−M
n
i jk

ρn
i jk

+ F

)
(20)

φ
n+1/2,L
i+1/2, j,k = φn

i jk +
(

1x

2
− un

i jk1t

2

)
φn

x,i jk −
1t

2
(v̂φy)i jk − 1t

2
(ŵφz)i jk , (21)

extrapolated from cell(i, j, k), and

Un+1/2,R
i+1/2, j,k = Un

i+1, jk −
(

1x

2
+ un

i+1, jk1t

2

)
Un

x,i+1, jk −
1t

2
(v̂Uy)i+1, jk − 1t

2
(ŵUz)i+1, jk

+ 1t

2

(
−Gpn−1/2

i+1, jk

ρn
i+1, jk

+ L
n
i+1, jk

ρn
i+1, jk

−M
n
i+1, jk

ρn
i+1, jk

+ F

)
(22)

φ
n+1/2,R
i+1/2, j,k = φn

i+1, jk −
(

1x

2
+ un

i+1, jk1t

2

)
φn

x,i+1, jk −
1t

2
(v̂φy)i+1, jk − 1t

2
(ŵφz)i+1, jk,

(23)

extrapolated from cell(i + 1, j, k).
Analogous formulae are used to predict values at each of the other faces of the cell:

Un+1/2,F/B
i, j+1/2,k , Un+1/2,U/D

i j ,k+1/2 , φ
n+1/2,F/B
i, j+1/2,k , φ

n+1/2,U/D
i j ,k+1/2 . (24)

The first derivatives normal to the face,Un
x, andφn

x for the example in (20) and (23) are
evaluated using a monotonicity-limited fourth-order slope approximation [18]. The limiting
is done on each component of the velocity attn individually.

The transverse derivative terms,

v̂Uy, ŵUz, v̂φy, ŵφz,

are evaluated by first extrapolatingU andφ to the transverse faces from the cell centers on
either side, using normal derivatives only, and then choosing between these states using the
upwinding procedure as described in detail by Almgrenet al. [3] and Puckettet al. [39].

Once we have computedun+1/2,L/R
i+1/2, jk , v

n+1/2,F/B
i, j+1/2,k , andw

n+1/2,T/B
i j ,k+1/2 , we are in a position to

construct the normal face-centered edge velocities attn+1/2:

uADV
i+1/2, jk, v

ADV
i, j+1/2,k, w

ADV
i j ,k+1/2.
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Givenun+1/2,L
i+1/2, jk andun+1/2,R

i+1/2, jk , we use an upwinding procedure to chooseun+1/2
i+1/2, jk :

un+1/2
i+1/2, jk =


uL , if uL > 0; uL + uR > 0,

0, if uL ≤ 0, uR ≥ 0, oruL + uR = 0,

uR if uR < 0; uL + uR < 0.

(25)

Here, we suppress thei + 1/2, j, k spatial indices on left and right states and we also sup-
press then+ 1/2 temporal index.

We follow a similar procedure as in (25) to constructv
n+1/2
i, j+1/2,k andw

n+1/2
i, j,k+1/2.

These normal velocities on cell faces attn+1/2,

un+1/2
i+1/2, jk, v

n+1/2
i, j+1/2,k, w

n+1/2
i j ,k+1/2, (26)

are second-order accurate but do not, in general, satisfy the discrete divergence-free condi-
tion. In order to make these velocities divergence-free, we apply the MAC projection [8].
The equation

DMAC

(
1

ρn
GMAC pMAC

)
= DMAC(Un+1/2) (27)

is solved forpMAC, where

DMACUn+1/2 = un+1/2
i+1/2, j,k − un+1/2

i−1/2, j,k

1x
+ v

n+1/2
i, j+1/2,k − v

n+1/2
i, j−1/2,k

1y
+ w

n+1/2
i, j,k+1/2− w

n+1/2
i, j,k−1/2

1z

andGMAC =−(DMAC)T so that

(
GMAC

x pMAC
)

i+1/2, j,k
=
(

pMAC
i+1, j,k − pMAC

i, j,k

)
1x

with GMAC
y andGMAC

z defined analogously. The resulting linear system (27) is solved using
a multigrid preconditioned conjugate gradient solver [48].

The face-based advection velocities attn+1/2 are then defined by

uADV
i+1/2, j,k = un+1/2

i+1/2, j,k −
1

ρn
i+1/2, j,k

(
GMAC

x pMAC
)

i+1/2, j,k
(28)

with vADV
i, j+1/2,k andwADV

i, j,k+1/2 defined analogously. The quantityρn
i+1/2, j,k in (28) is defined

by

ρn
i+1/2, j,k =

1

2

(
ρn

i jk + ρn
i+1, jk

)
with ρn

i, j+1/2,k andρn
i, j,k+1/2 defined analogously.

The next step, after constructing the advective velocities

uADV
i+1/2, j,k, v

ADV
i, j+1/2,k, w

ADV
i, j,k+1/2,
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is to choose the appropriate statesUn+1/2
i+1/2, jk, φ

n+1/2
i+1/2, jk given the left and right states in (20)

thru (23):

Un+1/2,L
i+1/2, j,k, Un+1/2,R

i+1/2, j,k, φ
n+1/2,L
i+1/2, j,k, φ

n+1/2,R
i+1/2, j,k.

We have

Un+1/2
i+1/2, jk =


UL , if uADV > 0,

1
2(UL + UR), if uADV = 0,

UR, if uADV < 0;
(29)

φ
n+1/2
i+1/2, jk =


φL , if uADV > 0,

1
2(φL + φR), if uADV = 0,

φR, if uADV < 0.

(30)

Here, we suppress thei + 1/2, j, k spatial indices on left and right states and we also
suppress then+ 1/2 temporal index.

We follow a similar procedure as in (30) and (29) to construct

Un+1/2
i, j+1/2,k, Un+1/2

i, j,k+1/2, φ
n+1/2
i, j+1/2,k, φ

n+1/2
i, j,k+1/2.

The advection terms can now be defined by

[(U · ∇)U]n+1/2
i, j,k =

1

1x

uADV
i+1/2, j,k + uADV

i−1/2, j,k

2
(Ui+1/2, j,k − Ui−1/2, j,k)

+ 1

1y

vADV
i, j+1/2,k + vADV

i, j−1/2,k

2
(Ui, j+1/2,k − Ui, j−1/2,k)

+ 1

1z

wADV
i, j,k+1/2+ wADV

i, j,k−1/2

2
(Ui, j,k+1/2− Ui, j,k−1/2); (31)

[(U · ∇)φ]n+1/2
i, j,k =

1

1x

uADV
i+1/2, j,k + uADV

i−1/2, j,k

2
(φi+1/2, j,k − φi−1/2, j,k)

+ 1

1y

vADV
i, j+1/2,k + vADV

i, j−1/2,k

2
(φi, j+1/2,k − φi, j−1/2,k)

+ 1

1z

wADV
i, j,k+1/2+ wADV

i, j,k−1/2

2
(φi, j,k+1/2− φi, j,k−1/2). (32)

3.3. Discretization of Pressure Gradient, Viscous and Surface Tension Terms

In this section we describe the finite difference approximation in two dimensions to the
pressure gradient,Gp, viscous term,L, and surface tension term,M. The finite difference
approximations in three dimensions follow analogously.

The discrete pressure gradient is defined by

(Gp)i j ≡
 pi+1/2, j+1/2+ pi+1/2, j−1/2− pi−1/2, j+1/2− pi−1/2, j−1/2

21x

pi+1/2, j+1/2− pi+1/2, j−1/2+ pi−1/2, j+1/2− pi−1/2, j−1/2

21y

 , (33)
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whereG here denotes a discrete gradient operator defined at cell centers but operating on
nodal data.

The first component of the viscous term(1/R)∇ · 2µ(φ)D is discretized as

(L)1
i j =

1

R


2µi+1/2, j (ui+1, j − ui, j )− 2µi−1/2, j (ui, j − ui−1, j )

1x2

+ µi, j+1/2(ui, j+1− ui, j )−µi, j−1/2(ui, j − ui, j−1)

1y2

+ µi, j+1/2(vi+1, j+1− vi−1, j+1+ vi+1, j − vi−1, j )−µi, j−1/2(vi+1, j − vi−1, j + vi+1, j−1− vi−1, j−1)

1x1y

 ,

where

µi+1/2, j = 1

2
(µ(φi, j )+ µ(φi+1, j )), µi, j+1/2 = 1

2
(µ(φi, j )+ µ(φi, j+1)).

The second component of the viscous term,(L)2
i j , is discretized in a similar manner.

The surface tension term(1/W)κ(φ)∇H(φ) is discretized as

(M)i j ≡ 1

W
(DN)i j (G Hnode)i j . (34)

Ni+1/2, j+1/2 is the discrete approximation of the level set normal∇φ/|∇φ|,

Ni+1/2, j+1/2 ≡ (Gφ)i+1/2, j+1/2

|(Gφ)i+1/2, j+1/2| , (35)

where

(Gφ)i+1/2, j+1/2 ≡
 φi+1, j+1+φi+1, j −φi, j+1−φi, j

21x

φi+1, j+1−φi+1, j +φi, j+1−φi, j

21y

 . (36)

Here we useG to refer to the discrete gradient operator defined on nodes but operating on
cell-centered data.

We define the cell-based discrete divergence operatorD by

(DN)i j ≡
n1

i+1/2, j−1/2+ n1
i+1/2, j+1/2− n1

i−1/2, j−1/2− n1
i−1/2, j+1/2

1x
(37)

+ n2
i+1/2, j+1/2− n2

i+1/2, j−1/2− n2
i−1/2, j−1/2+ n2

i−1/2, j+1/2

1y
. (38)

The node-based Heaviside functionHnode
i+1/2, j+1/2 is defined as the average of the four

surrounding cell-based Heaviside functions:

Hnode
i+1/2, j+1/2 =

H(φi+1, j )+ H(φi, j )+ H(φi+1, j+1)+ H(φi, j+1)

4
. (39)

3.4. Discretization of the Projection

In this section we describe the discrete “approximate projection,”P , which is used in
(17).P is an approximation to the projection operatorP described in (10). We remark that
a detailed description of the approximate projection is given by [5].
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Given the discrete vector field

U∗ − Un

1t
, (40)

we decompose (40) into anapproximatelydivergence-free part

Un+1− Un

1t
(41)

and the discrete gradient of a scalarq divided by density

(Gq)i j

ρ
n+1/2
i j

, (42)

where the discrete gradientG in (42) is defined in (33).
The approximate projection is computed by solving

Lρq = D

(
U∗ − Un

1t

)
(43)

for q. The right-hand side of (43) is an approximation to∇ ·V found in the right-hand side
of (8). The discrete divergenceDU is

(DU)i+1/2, j+1/2 = ui+1, j + ui+1, j+1− ui, j − ui, j+1

1x

+ vi+1, j+1− vi+1, j − vi, j + vi, j+1

1y
. (44)

The left-hand side of (43),Lρq, is an approximation to∇ · (1/ρ)∇ p found in the left-hand
side of (8). The discrete representation ofLρq is

(Lρq)i+1/2, j+1/2

= 1

6h2



1
ρi, j

(2qi−1/2, j−1/2+ qi+1/2, j−1/2+ qi−1/2, j+1/2− 4qi+1/2, j+1/2)

+ 1
ρi, j+1

(2qi−1/2, j+3/2+ qi+1/2, j+3/2+ qi−1/2, j+1/2− 4qi+1/2, j+1/2)

+ 1
ρi+1, j

(2qi+3/2, j−1/2+ qi+1/2, j−1/2+ qi+3/2, j+1/2− 4qi+1/2, j+1/2)

+ 1
ρi+1, j+1

(2qi+3/2, j+3/2+ qi+1/2, j+3/2+ qi+3/2, j+1/2− 4qi+1/2, j+1/2)


.

(45)

In two dimensions the operatorLρq (45) is derived from the variational form of (8),∫
1

ρ
∇q(x) · ∇ψ(x) dx =

∫
U∗ − Un

1t
· ∇ψ(x) dx ∀ψ(x), (46)

wheredx is the volume elementdx dy, r dr dθ , or dx dy dz, as appropriate. The finite
element basis functionsψ(x) represent standard piecewise bilinear functions. In three di-
mensions we use a standard seven-point approximation in order to deriveLρq.
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After (43) is solved, we form(Un+1− Un)/1t ,

Un+1− Un

1t
= U∗ − Un

1t
− Gq

ρn+1/2
, (47)

and pn+1/2,

pn+1/2 = pn−1/2+ q.

Remarks. • The discrete projection step presented here is slightly different from the
continuous analogue presented in Section 2.1 because we are solving for thedifferencein
pressureq= pn+1/2− pn−1/2, instead of the actual pressurepn+1/2.
• The discrete projection operatorP is called an approximate projection because the

discrete divergence of (41),

[
D

(
Un+1− Un

1t

)]
i+1/2, j+1/2

, (48)

is not identically zero. In order to see why (48) is not necessarily zero, we apply the discrete
divergenceD to both sides of (47) in order to arrive at

[
D

(
Un+1−Un

1t

)]
i+1/2, j+1/2

=
[

D

(
U∗ −Un

1t

)]
i+1/2, j+1/2

−
[

D
1

ρn+1/2
Gq

]
i+1/2, j+1/2

.

(49)

The discrete operatorD(1/ρn+1/2)Gq is not the same asLρq, which means (48) is not
necessarily zero.

3.4.1. Matrix solver. In order to compute the approximate projectionP , we solve (43)
for qi+1/2, j+1/2. We use the multigrid-preconditioned conjugate gradient method (MGPCG)
[48] for solving (43).

The boundary conditions for (43) are homogeneous Neumann at a solid wall or at an axis
of symmetry. The boundary conditions at outflow boundaries are homogeneous Dirichlet.

In preliminary development, we attempted to use standard multigrid techniques to solve
(43). These standard multigrid techniques used the coefficients 1/ρ in defining the interpo-
lation operator [3, 1], but would not converge for many problems with high density ratios.
As an example, for an axisymmetric bubble rise problem with no surface tension, standard
multigrid took an order of magnitude more iterations than MGPCG at the point near bubble
breakup.

As a result, we have implemented the multigrid-preconditioned conjugate gradient method
[48] to solve (43). This allows us to run the bubble and drop problems that previously failed
at the proper density ratio (816:1).

The preconditioner is a single multigrid V-cycle [51] with the following properties,
motivated by the need for the preconditioner to a conjugate gradient solve to be symmetric:

• The interpolation and restriction operators have no coefficient-weighting and satisfy
cRT = I ; R refers to the restriction operator andI refers to the interpolation operator.
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• Symmetric multicolor Gauss–Seidel relaxation is used as the smoother at each level of
the V-cycle. For the nine-point stencil in two dimensions, we use a four-color Gauss–Seidel
relaxation step. On the way down the V-cycle, the order is RBGW. On the way up, the order
is WGBR. Likewise, for the three-dimensional seven-point stencil, we use a multicolored
relaxation scheme in which the ordering is again reversed on the way up the V-cycle.
• At the coarsest level of the V-cycle, the “bottom solver” is a preconditioned conjugate

gradient solver. The preconditioner for this bottom solver is again symmetric multicolor
Gauss–Seidel relaxation as described above; i.e. RBGW on the way down the V-cycle, and
WGBR on the way up. The equation at the coarsest level must be solved to a tolerance two
orders of magnitude smaller than the tolerance of the overall conjugate gradient solver, or
the multigrid as preconditioner will not be sufficiently symmetric.
• If the boundary conditions are all homogeneous Neumann, discrete solvability is en-

forced by ensuring that the sum of the right-hand side of (43) is zero.
• The elliptic operator at each level of the V-cycle is identical in form but with coarsened

coefficients from the finer levels. The coefficients 1/ρ are each associated with a directional
flux and are coarsened by doing an arithmetic average transverse to each “flux” and a
harmonic average parallel to the flux; we refer the reader to [3] for details of this procedure.

3.5. Interface Thickness

We shall give the interface a thickness as was done in the work of [50, 45]. Numerically,
we substitute the smoothed Heaviside functionHε(φ) for the sharp Heaviside function
H(φ). The smoothed Heaviside function is defined as

Hε(φ) =


0, if φ < −ε,

1
2

[
1+ φ

ε
+ 1

π
sin(πφ/ε)

]
, if |φ| ≤ ε,

1, if φ > ε.

(50)

Assume thatφ represents the signed normal distance to the free surface. The 1/2 contour of
the sharp Heaviside functionH(φ) will show up on a contour plot with jagged or staircase
contours. Althoughφ is smooth,H(φ) has a jump at the zero levelset. A contour plot of
Hε(φ) whereε=α1x will not show up having a jagged shape whenα > 1. By giving
the interface a thickness of 2ε we eliminate problems when solving (43) and also when
discretizing the surface tension term

1

W

κ(φ)∇H(φ)

ρ(φ)
.

In our algorithm, the front will have a uniform thickness which means we require that the
level set functionφ represent the signed normal distance to the free surface; in other words,
φ is a distance function. It is clear that we can chooseφ(x, 0) to be a distance function;
however, under the evolution of (2) it will not necessarily remain one.

In order to maintainφ(x, t) as a distance function, we must be able to solve the following
problem: given a level set functionφ(x, t), reinitialize it so that it is a distance function for
|φ|< ε without changing its zero level set. This is achieved (see [45, 43]) by performing
the following steps:

1. d(x, 0)=φ(x, t).
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2. Forτ = 0 · · · ε solve

∂d

∂τ
= S(φ)(1− |∇d|), (51)

where

S(φ) =


−1, if φ < 0,

0, if φ = 0,

1, if φ > 0,

(52)

andτ is an artificial time.
3. φ(x, t)= d(x, ε).

The steady solutions of (51) are distance functions. Furthermore, sinceS(0)= 0, thend(x, τ )

has the same zero level set asφ(x, t).

We only need to solve (51) forτ = 0 · · · ε because the level set function is reinitialized
near the front first. To see this we rewrite (51) as

dτ + w · ∇d = S(φ), (53)

where

w= S(φ)
∇d

|∇d| .

It is evident that (53) is a nonlinear hyperbolic equation with the characteristic velocities
pointingoutwardsfrom the interface in the direction of the normal. This means thatd will
be reinitialized to|∇d| =1 near the interface first. Since we only need the level set function
to be a distance function near the interface, it is only necessary to solve (53) forτ = 0 · · · ε.

The time-stepping procedure for the redistance equation (51) is based on the second-order
Runge–Kutta method. At the beginning of each iteration we are givendk at “time” τ k. We
then have

dk,(1) = dk +1τ L(dk), (54)

dk+1 = dk,(1) + 1τ

2

(
L(dk)+ L

(
dk,(1)

))
. (55)

1τ is chosen to be1x/2;1x/2 satisfies the CFL condition for (53) since|w| ≤1. L(d)

represents the discretization of the spatial termS(φ)(1− |∇d|). L(d) is defined as

L(d) = S1x(φ)
(
1−

√
(Dxd)2+ (Dyd)2

)
, (56)

whereS1x(φ) is a smoothed sign function,

S1x(φ) ≡ 2(H1x(φ)− 1/2), (57)

andDxd, Dyd are approximations to∂d/∂x and∂d/∂y, respectively.Dxd is defined as

(Dxd)L
i j = D−x di j + 1x

2
m(D+x D−x di j , D+x D−x di−1, j ) (58)
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(Dxd)R
i j = D+x di j − 1x

2
m(D+x D−x di j , D+x D−x di+1, j ) (59)

wL = (Dxd)L
i j S(φ) (60)

wR = (Dxd)R
i j S(φ) (61)

(Dxd)i j =


(Dxd)L

i j , if wL > 0 andwL + wR > 0,

(Dxd)R
i j , if wR < 0 andwL + wR < 0,

0, if wL < 0 andwR > 0.

(62)

The functionm(a, b) and the difference operatorsD−x andD+x , found in (58) and (59), are
defined as

m(a, b) =
{

a, if |a| ≤ |b|,
b, otherwise; (63)

D−x di j = di j − di−1, j

1x
, (64)

D+x di j = di+1, j − di, j

1x
. (65)

Analogous formulas as forDxd are used to approximate∂d/∂y and∂d/∂z. The discre-
tization described above forDxd corresponds to a second-order essentially nonoscillatory
(ENO) scheme described in detail by [42, 23].

We use an improvement to the redistance step which was developed in [43]. We interpret
the term,S(φ), in (51) as a “constraint” used both to prevent the interface from moving and
also to implicitly prescribe boundary conditions at the interface. For discretization purposes
we wish to enforce another constraint: the volume filled by each fluid must stay constant
when the redistance step is applied. For each grid cell,Äi j , we define volume as

Vk
i j =

∫
Äi j

H(dk) dx, (66)

whereH is the Heaviside function described by (2) anddk is the value ofd atτ k, the “time”
after thekth iteration in the redistance step.

Because volume should not change, we should haveVk
i j =V0

i j . Nevertheless, if the redis-
tance step slightly changes the location of the zero level set, we then have, forτ k− τ 0=
O(1x),

Vk
i j − V0

i j ≈ (τ k − τ 0)

∫
Äi j

d Hε(d0)

dτ
dx

≈
∫

Äi j

H ′ε(d
0)(dk − d0) dx, (67)

where

H ′ε(d) =
{

0, if |d| > ε,

1
2

[
1
ε
+ 1

ε
cos(πd/ε)

]
, if |d| ≤ ε.

(68)
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In order to minimize volume variation, we project the current values of the level set function,
denoted as̃dk

i j , onto new values, denoted asdk
i j , which satisfy∫

Äi j

H ′ε(d
0)(dk − d0) dx = 0. (69)

If (69) is satisfied then by (67) the volume change will be very small. To implement this
projection we assumedk

i j has the form

dk
i j = d̃k

i j + λi j (τ
k − τ 0)H ′ε(d

0), (70)

whereλi j is assumed constant inÄi j . After substituting (70) into (69), we have

λi j =
−∫

Äi j
H ′ε(d

0)
(

d̃k − d0

τ k − τ 0

)
dx∫

Äi j

(
H ′ε(d0)

)2
dx

. (71)

Equation (71) is discretized in each cell by using a nine-point stencil to perform the inte-
gration. Sinceλi j is assumed constant in each cell, the above equation can be solved both
explicitly and quickly. The projection step given by (70) is applied after each redistance
iteration. In the work of [43] it was shown that the above constraint helps the level set
function converge to a distance function while still maintaining the original zero level set.

3.6. Initialization of the Data

Specification of the problem must include values forU andφ at timet0= 0 and values
for the initial pressurep at timet1/2. The pressure is not initially prescribed and must be
calculated in an initial iterative step.

To begin the calculation, the initial velocity field is first projected to ensure that it satisfies
the divergence constraint att = 0. Then an initial iteration is performed to calculate an
approximation to the pressure att = 1t/2. If this process were iterated to convergence
and the projection were exact, thenU1≡U ∗ in the first step, because the pressure used
in Eq. (16) would in fact bep1/2, not p−1/2. However, in practice we typically perform
only a few iterations, since what is needed for second-order accuracy in Eq. (16) is only a
first-order accurate approximation topn+1/2, which in a standard time step is approximated
by pn−1/2.

In each step of the iteration we follow the procedure described in the above subsections.
In the first iteration we usep−1/2= 0. At the end of each iteration we have calculated a
value ofU1 and a pressurep1/2. During the iteration procedure, we discard the value of
U1, but definep−1/2= p1/2. Once the iteration is completed, we use the value ofp−1/2 in
Eq. (16) along with the values ofU0 andφ0.

4. ADAPTIVE MESH REFINEMENT

In this section we present the extension of the single-grid algorithm described above
to an adaptive hierarchy of nested rectangular grids. The basic adaptive framework is as
described by Almgrenet al. [3].
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FIG. 2. Diagram of grid structure used in adaptive mesh refinement (AMR). In this example there are three
levels. Level 0 has one 16× 16 grid. Level 1 has two grids; a 16× 16 grid and a 8× 14 grid. Level 2 also has two
grids; a 16× 20 grid and a 16× 12 grid. The refinement ratio between levels in this example is 2.

In Fig. 2 we show an example of the grid structure used in adaptive mesh refinement
(AMR) [6, 11, 10, 33]. The grid hierarchy is composed of different levels of refinement
ranging from coarsest,̀= 0, to finest,̀ = `max. The coarsest level,̀= 0, covers the whole
computational domain while successively higher levels,`+ 1, lie on top of the level under-
neath them, level̀. Each level is represented as the union of rectangular grid patches of
a given resolution. In our computations the refinement ratio between levels is 2. Thus we
have1x`+1=1y`+1 = 1z`+1= 1

21x`. The grids are properly nested, in the sense that the
union of grids at level̀ + 1 is contained in the union of grids at level` for 0≤ ` < `max.
Furthermore, the containment is strict in the sense that, except at physical boundaries, the
level` grids are large enough to guarantee that there is a border at least one level` cell wide
surrounding each level̀+ 1 grid.

The initial creation of the grid hierarchy and the subsequent regridding operations in
which the grids are dynamically changed to reflect changing flow conditions use the same
procedures as were used by Bellet al.[6] for hyperbolic conservation laws. In the problems
we compute here, we shall “tag” cells which contain part of the gas/liquid interface, i.e.
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those in which the level set function changes sign. For some problems, in order to generate
the finest level of refinement, we require not only that that cells contain the interface, but
also that the curvature in those cells exceed a preset threshold in order to be “tagged.” Once
cells on a specified level are “tagged” for refinement, the grids at the next higher level can
be constructed. The tagged cells are grouped into rectangular patches using the clustering
algorithm given in Berger and Rigoustsos [12]. These rectangular patches are refined to
form the grids at the next level. The process is repeated until either the error tolerance
criteria are satisfied or a specified maximum level is reached.

At t = 0 the initial data is used to create grids at level 0 through`max. Grids have a user-
specified maximum size; therefore, more than one grid may be needed to cover the physical
domain. As the solution advances in time, the regridding algorithm is called everyk steps,
k is a user-specified parameter, to redefine grids at levels 1 to`max. Level 0 grids remain
unchanged throughout the calculation.

When new grids are created at level`+ 1, the data on these new grids are copied from
the previous grids at level̀+ 1 if possible; otherwise they are interpolated in space from
the underlying level̀ grids. We use conservative interpolation for cell-centered variables
U andφ [38] and bilinear interpolation for pressure.

We note here that while there is a user-specified limit to the number of levels allowed,
at any given time in the calculation there may not be that many levels in the hierarchy; i.e.
`max can change dynamically as the calculation proceeds, as long as it does not exceed the
user-specified limit.

4.1. Overview of Time-Stepping Procedure

An important distinction between the adaptive algorithm presented in this paper and that
presented in [3] is the fact that we do not use a “subcycling” timestep procedure.3 In other
words, the data on the coarsest levels is advanced with the same timestep as the data on
the finest level. The timestep for each level1t` is the same as the timestep on the finest
level 1t`max. The procedure to advanceU andφ on levels 0 thrù max is similar to the
Crank–Nicholson procedure presented for the single grid discretization 3.1:

1. Level set update forφn+1,`. For levels 0≤ `≤ `max,

φn+1,` = φn,` −1t`[U · ∇φ]n+1/2,`. (72)

The evaluation of the nonlinear advection term [U · ∇φ]n+1/2,` requires that we apply the
MAC projection (27) on all levels simultaneously. Details of the composite MAC projection
are presented in Section 4.2.

2. Semi-implicit viscous solve for the intermediate velocityU∗,`. For levels 0≤ `≤ `max,
we solve (16). Details of the composite viscous solve are presented in Section 4.3.

3. Projection step forUn+1,`. For levels 0≤ `≤ `max we solve (17). Details of the com-
posite projection step are presented in Section 4.4.

4. Composite redistance operation on levels0≤ `≤ `max. Details of the composite re-
distance step are presented in Section 4.5.

As in the adaptive mesh technique for hyperbolic systems, the extrapolation ofU andφ

to the cell faces attn+1/2, as described by (20) thru (23), can be performed one grid at a

3 However, we do use a “subcycling” timestep procedure for the composite redistance step; see Section 4.5 for
details.
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time, with boundary data copied from other fine grids, interpolated from underlying coarse
grids, or supplied from physical boundary conditions. The composite MAC projection,
composite viscous solve, and composite approximate projection require that the solution be
computed on all grids at a level at one time, since these are no longer explicit operations.
Boundary data for these solves are interpolated from underlying coarse grids or supplied
from physical boundary conditions. The interpolation and solution procedure for these
equations are discussed in Sections 4.2, 4.3, and 4.4.

4.2. Composite MAC Projection

The composite MAC projection consists of the following steps:

1. Average down unprojected face centered velocities (26) and density, for` = `max−
1 · · ·0,

Un+1/2,` = I `
`+1Un+1/2,`+1

ρn,` = I `
`+1ρ

n,`+1.

The operatorI `
`+1 represents the averaging down of level`+ 1 data onto level̀ data. The

equations for averaging down face-centered velocities and density are

u`
i−1/2, j =

1

2

(
u`+1

2i−1/2,2 j + u`+1
2i−1/2,2 j+1

)
(73)

v`
i, j−1/2 =

1

2

(
v`+1

2i,2 j−1/2+ v`+1
2i+1,2 j−1/2

)
(74)

ρ`
i, j =

1

4

(
ρ`+1

2i,2 j + ρ`+1
2i+1,2 j + ρ`+1

2i,2 j+1+ ρ`+1
2i+1,2 j+1

)
. (75)

Analogous equations are used for three-dimensional problems.
2. Perform a single level MAC-project on each level for`= 0 · · · `max

DMAC

(
1

ρn,`
GMAC pMAC,`

)
= DMAC(Un+1/2,`)

uADV ,`
i+1/2, j = un+1/2,`

i+1/2, j −
1

ρ
n,`
i+1/2, j

(
GMAC

x pMAC,`
)

i+1/2, j

v
ADV ,`
i, j+1/2 = v

n+1/2,`
i, j+1/2 −

1

ρ
n,`
i, j+1/2

(
GMAC

y pMAC,`
)

i, j+1/2.

Remarks. • The solver for a single level MAC-project is the same as that described for
a single grid MAC-project (27) except that on each level, we have to solve over a collection
of grids. Also, Dirichlet boundary conditions for pressure have to be specified at boundaries
between levels̀ and`− 1.
• Minion et al.have presented a multigrid-based composite MAC projection algorithm

in [33] for constant density problems. They solve over all levels simultaneously. For our
problems, in which the density ratio is 816:1, we have had convergence problems using
only multigrid for (43); thus we resort to solving a level at a time using the multigrid
preconditioned conjugate gradient method and then synchronizing levels`= 0 · · · `max as
described in the next step.
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3. Synchronize newly MAC-projected edge velocities to be discretely divergence-free
across coarse-fine grid boundaries for`= `max− 1 · · ·0

UADV ,` = I `
`+1UADV ,`+1

DMAC

(
1

ρn,`
GMAC p̃MAC,`

)
= DMAC(UADV ,`) (“MAC-synchronization”)

ũADV ,`
i+1/2, j = uADV ,`

i+1/2, j −
1

ρ
n,`
i+1/2, j

(
GMAC

x p̃MAC,`
)

i+1/2, j

ṽ
ADV ,`
i, j+1/2 = v

ADV ,`
i, j+1/2−

1

ρ
n,`
i, j+1/2

(
GMAC

y p̃MAC,`
)

i, j+1/2

ucorrect,`
i+1/2, j = ũADV ,`

i+1/2, j − uADV ,`
i+1/2, j

v
correct,`
i, j+1/2 = ṽ

ADV ,`
i, j+1/2− v

ADV ,`
i, j+1/2;

for `′ = `+ 1 · · · `max

Ũ
ADV ,`′ = Ũ

ADV ,`′ + I `′
` Ucorrect,`.

Remarks. • Homogeneous Dirichlet boundary conditions forp̃MAC,` are enforced at
boundaries between levels` and`− 1.
• The only contribution to the right hand side of the “MAC-synchronization” step will

be at cells on the immediate coarse grid side of the boundaries separating levels`+ 1 and
`. This is because the averaging down procedure for the face-centered velocities (73, 74)
preserves the discrete divergence free property; i.e., ifDMACUADV ,`+1= 0 then we also have
DMACUADV ,`= 0.
• The interpolation operatorI `′

` also preserves the discrete divergence free property. The
equations for interpolation are described for the case when`′ = `+ 1 as

u`+1
2i−1/2,2 j = u`

i−1/2, j (76)

u`+1
2i−1/2,2 j+1 = u`

i−1/2, j (77)

u`+1
2i+1/2,2 j =

1

2

(
u`

i−1/2, j + u`
i+1/2, j

)
(78)

u`+1
2i+1/2,2 j+1 =

1

2

(
u`

i−1/2, j + u`
i+1/2, j

)
. (79)

Analogous equations are used for the other velocity components and also for three-
dimensional problems.
• If the resulting corrected fine grid velocities̃U

ADV ,`+1
are averaged down onto level

`, there will be no change iñU
ADV ,`

. Furthermore,DMACŨ
ADV ,`= 0. This is because our

averaging operatorI `
`+1 and our interpolation operatorI `′

` preserve the discrete divergence.
• In all of our computations the ratio of‖Ucorrect,`‖2 to ‖UADV ,`‖2 is less than 10−8. This

is because we have averaged down the unprojected MAC velocities prior to our composite
solve. This is only possible since we do not use a “subcycling” time step procedure (see
Section 4.5 for outline of the “subcycling” time step procedure).
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• In our computations shown in Fig. 8, the synchronization procedure took 5% of the
total CPU time and the full composite MAC project procedure, including the synchroniza-
tion procedure, took 32% of the total CPU time. The synchronization procedure took a
comparable amount of time for all of our other computations too.

4.3. Composite Semi-Implicit Solve

In this section we describe how we solve (16) over multiple levels. The composite semi-
implicit solve consists of the following steps:

1. Average down the time centered density for`= `max− 1 · · ·0

ρn+1/2,` = I `
`+1ρ

n+1/2,`+1.

2. On each level, form the right-hand side of (16), excluding the viscous terms, for
`= 0 · · · `max

Vn+1/2,` = Un,` +1t

(
−[(U · ∇)U]n+1/2,` − Gpn−1/2,`

ρn+1/2,`
−M

n+1/2,`

ρn+1/2,`
+ F

)
.

3. Average downVn+1/2,` for `= `max− 1 · · ·0

Vn+1/2,` = I `
`+1Vn+1/2,`+1.

4. Perform a single level semi-implicit viscous solve (16) on each level, solving forU∗,`

for `= 0 · · · `max

U∗,` −1t
L∗,` + Ln,`

2ρn+1/2,`
= Vn+1/2,` (“Single-level viscous solve”).

5. Average downU∗,` for `= `max− 1 · · ·0

U∗,` = I `
`+1U∗,`+1.

The issues in solving the “single level viscous solve” as opposed to a single grid viscous
solve (16) are described in detail in Section 3.5 of [3]. The boundary conditions forU∗,` are
homogeneous Dirichlet at a solid wall and homogeneous Neumann at outflow boundaries.
At a coarse–fine grid boundary, i.e. the boundary separating levels` and`− 1, the solution
is specified by quadratic interpolation from the coarser level. Here we address the only
additional issue, that of how to provide boundary conditions for a nine-point stencil in two
dimensions rather than the five-point stencil. The extension to three dimensions follows
analogously. The difficulty here is in how to define the value at each corner point of the
stencil when that point lies outside the fine grid.

There are three possibilities for the corner ghost cell: (1) it lies in another fine grid,
in which case the value is supplied by the other fine grid; (2) it lies outside the physical
boundary, in which case the value is supplied by the physical boundary conditions; or (3) the
value must be interpolated from the coarse grids. The interpolation scheme for such ghost
cells is described in detail in [3] when the ghost cell is aligned with a row of fine grid cells,
such as is always the case with a five-point stencil and is the case for the nine-point stencil,
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except at the corner of the grid. At the fine grid corners, rather than interpolate between fine
grid and coarse grid points along a diagonal, the ghost cell value is filled by extrapolating
from ghost cell values along one of the edges intersecting that corner.

4.4. Composite Approximate Projection

In this section we describe how we compute the approximate projection (17) over multiple
levels.

SinceU∗,` andρn+1/2,` were averaged down in the “Composite Semi-Implicit Solve”
(Section 4.3), we do not need to average down these quantities prior to the composite
approximate projection. The composite approximate projection consists of the following
steps:

1. Perform a single level approximate projection step (17) on each level, solving for
Un+1,` for `= 0 · · · `max

Un+1,` − Un,`

1t
= P

(
U∗,` − Un,`

1t

)
(“single-level approximate projection”).

2. Average downUn+1,` for `= `max− 1 · · ·0

Un+1,` = I `
`+1Un+1,`+1.

Remarks. • The “single level approximate projection” is the same as the single grid
approximate projection described in Section 3.4.1, except that on each level we must solve
over a collection of grids. Also, Dirichlet boundary conditions for pressure have to be
specified at boundaries between level` and level̀ − 1.
• Projecting on each level individually is contrary to the elliptic nature of the governing

Eqs. (3) and (4). That is to say, the solution on coarse grids depends not only on local
conditions, such as would be the case if one were solving purely hyperbolic equations, but
also on nonlocal conditions, such as data lying underneath fine grids. In our implementation,
we advance all levels with the same timestep; this allows us to average down(U∗,`−Un,`)/1t
prior to solving the projection equation. By averaging down prior to the projection equation,
we minimize the decoupling error generated by solving one level at a time. The ratio of
‖Ucorrect,`‖2 to ‖U`‖2 (see Section 4.2 for the definition of‖Ucorrect,`‖2) was less than 10−8

for all our computations. In Sections 5.1.1 and 5.3, we did computations on both an adaptive
grid and a single uniformly fine grid; the adaptive results showed very good agreement with
the single grid results.

4.5. Composite Redistance Step

In this section, we describe how to solve (51) on levels 0≤ `≤ `max. If ε is the thickness
of our interface, then we solve (51) forτ = 0 to τ = ε.

The procedure to advanced is a subcycling procedure; the fictitious time step on each
level satisfies1τ`=1x`/2. We outline the procedure to advance the solution of (51) on
level ` from “time” τ to timeτ +1τ`. This procedure is recursive with respect to refine-
ment level. Further details on subcycling are given in [3, 38, 10].
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ALGORITHM (Advance solution on level̀ from “time” τ to τ +1τ`).

1. Advance solution on each level` grid from ‘time’ τ to τ +1τ`. Boundary conditions
for d are supplied from level̀− 1 if ` > 0, and from the physical domain boundaries.

2. Advance the solution on level`+ 1 from τ to τ +1τ`/2, then fromτ +1τ`/2 to
τ + 21τ`/2.

3. Average the solution from level`+ 1 onto level̀ .

We remark that the above “subcycling” procedure is a recursive procedure because in
order to advance the solution on level`+ 1 above, one must recursively call the above
algorithm again with̀ replaced bỳ + 1, and then again with̀+ 1 replaced bỳ + 2 . . ..

5. NUMERICAL EXAMPLES

We present air/water computations on a two-dimensional axisymmetric(r -z) grid and
on a fully three-dimensional grid. We validate our method via convergence checks, direct
comparison with other numerical methods, and comparison with experiments.

5.1. Convergence Checks

We measure the order of accuracy of our method by comparing the relative error between
successively refined computations. The relative error is defined as

E(t) =
∑
i, j

∫
Äi j

|H(φc(t))− H(φ f (t))| dx, (80)

whereφc is the level set function from a coarser computation andφ f is the level set function
from the refined computation. The integral in (80) is approximated by partitioningÄi j into
100× 100 rectangles and then applying the midpoint rule. The values ofφc andφ f at the
midpoint of each rectangle are obtained via bilinear interpolation.

We also measure the volume to check that volume conservation is attained as the grid is
refined. The volume is measured as

V(t) =
∑
i, j

∫
Äi j

H(φ(t)) dx. (81)

5.1.1. Inviscid gas bubble I.We compute the evolution of an axisymmetric rising in-
viscid air bubble in water with surface tension. Inviscid gas bubbles have been studied
computationally by [40, 31, 13, 47]. As a remark, [40] also used AMR in their compu-
tations of a shock-bubble interaction. In our first test problem, the density ratio is 816:1
and the Weber number is 200. In Fig. 3, we display the bubble at timest = 0.0, t = 1.2,
andt = 1.3. The spatial mesh size on the finest level is1x`max= 6/512 and the interfacial
thickness parameter isε= 31x`max. The solid line represents results for the same problem
using the boundary integral method [44] with 240 points placed on the free surface. In order
to compare with the boundary integral method, we use far-field boundary conditions on
all sides of the domain except atr = 0; i.e., we assume that the pressure on the walls is
p= ρl z/Fr.

In Table I, we show that the solution converges at a rate ofO(h1.5) as progressively finer
levels are added. We also compared the adaptive results in which1x`max= 6/256 to the
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FIG. 3. Spherical gas bubble in liquid: density ratio 816:1, We= 200. Results computed using the adaptive
levelset method (thin contour) are compared to results computed using the boundary integral method (thick
contour).

single grid results in which1x= 6/256 over the whole domain. The difference between
these two computations att = 1.3 is 0.0036 which is considerably less than the errors listed
in Table I. The speedup of the adaptive computation over the corresponding single grid
computation was 2.5.

In order to study the behavior of a rising gas bubble during a change in topology, we
added an extra level of adaptivity only at regions of high curvature. The results for this
computation are compared to the results without the extra level of adaptivity in Fig. 4. As
depicted by Fig. 4, the bubble never pinches off. In fact, it appears that if we refined further
and further, the bubble would never break; but the bottom surface would get arbitrarily
close to the top surface. We remark that the boundary integral method seems to indicate
that the bubble should pinch off in finite time. But, the boundary integral method assumes
zero density in the air. In the work of Best [13], they also show pinch off in finite time
using the boundary integral method, but they retain an infinitely thin strip at the top of the
resulting toroidal bubble. This thin strip is very similar to the connecting line that we show in
Fig. 4.

TABLE I

Convergence Study for W = 200 andα = 3 at t = 1.3

1x`max V(1.3) E(1.3) Order

6/64 4.09 N/A N/A
6/128 4.14 0.184 N/A
6/256 4.16 0.065 1.5
6/512 4.19 0.023 1.5
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FIG. 4. Spherical, inviscid gas bubble in liquid; density ratio 816:1, We= 200. For results on the left, an extra
level of adaptivity is added at region of high high curvature.

5.1.2. Inviscid gas bubble II.In this section, we compute the same problem as in
Section 5.1.1, except that we set the Weber number to 10 instead of 200. In Fig. 5, we
display the bubble at timest = 1.7 andt = 2.0. The spatial mesh size on the finest level
is 1x`max= 6/512 and the interfacial thickness parameter isε= 31x`max. The solid line
represents results for the same problem using the boundary integral method [44] with 240
points placed on the free surface. As in Section 5.1.1, we use far-field boundary conditions
on all sides of the domain except atr = 0. In Tables II and III, we show convergence results
at t = 1.7 andt = 2.0 when progressively finer levels are added.

TABLE II

Convergence Study for W = 10 andα = 3 at t = 1.7

1x`max V(1.7) E(1.7) Order

6/64 4.05 N/A N/A
6/128 4.12 0.233 N/A
6/256 4.15 0.083 1.5
6/512 4.17 0.029 1.5
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FIG. 5. Spherical gas bubble in liquid: density ratio 816:1, We= 10. Results computed using the adaptive
levelset method (thin contour) are compared to results computed using the boundary integral method (thick
contour).

As in Section 5.1.1, we add an extra level of adaptivity only at regions of high curvature.
The results for this computation are shown in Fig. 6. By contrast with the results forW= 200
in Section 5.1.1, it appears from the refined results here forW= 10 that the bubble will
pinch off no matter how much we refine the grid. In Table IV, we show the pinch-off time
for successively refined computations of theW= 10 case.

5.1.3. Zero gravity drop oscillation.In this section we compute axisymmetric zero-
gravity drop dynamics and compare these with the linearized drop oscillation solutions of
Lamb [29, Section 275]. The interfacial position of the drop is shown to be

x(θ, t) = a+ εPn(cos(θ)) sin(ωnt),

where

ω2
n =

1

W

n(n− 1)(n+ 1)(n+ 2)

a3(n+ 1+ nρ2/ρ1)

TABLE III

Convergence Study for W = 10 andα = 3 at t = 2.0

1x`max V(2.0) E(2.0) Order

6/64 4.06 N/A N/A
6/128 4.12 0.422 N/A
6/256 4.14 0.166 1.3
6/512 4.16 0.072 1.2
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TABLE IV

Convergence of Pinch-Off Time

for W = 200 andα = 3

1x`max Pinch-off time

6/64 2.439
6/128 2.007
6/256 1.912
6/512 1.919

FIG. 6. Spherical inviscid gas bubble in liquid; density ratio 816:1, We= 10. Effective fine grid resolution
512× 1024.
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FIG. 7. Perturbation in minor amplitude for zero gravity drop oscillations. W= 2, R= 200, density ratio
100:1, viscosity ratio 100:1.

and Pn is the Legendre polynomial of ordern. If viscosity is present, the amplitude is
proportional toe−t/τ , where

τ = a2R

(2n+ 1)

n+ (ρ2/ρ1)(n+ 1)

n(n− 1)+ (n+ 1)(n+ 2)µ2/µ1
.

This equation is derived following the approach outlined in Lamb [29, Section 355].
We compute the evolution of a drop witha= 1, µ2/µ1= 0.01, W= 2, ρ2/ρ1= 0.01, and

R= 200. The initial free surface is given byx(θ, 0), with ε= 0.05 andn= 2. With these
parameters we findω2= 2.00 andτ = 38.3. The fluid domain isÄ={(x, y) | 0≤ x≤ 2 and
0≤ y≤ 4} and the coarse grid size is 24× 48. We compare results as succeeding levels of
adaptivity are added. The interfacial thickness parameterα is 21x`max. The results of our
computations are shown in Fig. 7, where we display the perturbation in the minor axis for
varying levels of resolution. The average dimensionless period is 3.17 and the expected
linearized period isπ . TheL1 error between succeeding resolutions is measured as∫ π

0
|xh(0, t)− x2h(0, t)| dt

and theL∞ error is measured as

max
0≤t≤π
|xh(0, t)− x2h(0, t)|.

We display our computed errors in Table V.
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TABLE V

Convergence Study Zero Gravity Drop Oscillations W = 2, Re = 200, Minor Axis

1x`max L1 L∞ Period Order (L∞)

4/48 N/A N/A 3.22 N/A
4/96 1.25E-3 3.04E-3 3.18 N/A

4/192 3.50E-4 6.89E-4 3.17 2.1

5.2. Comparison with Experiments

We compute the evolution of an axisymmetric rising gas bubble in a viscous liquid. The
density ratio is 714:1 and the viscosity ratio is 6667:1. The Reynolds number, Froude number
and Weber number are 9.7, 0.78, and 7.6, respectively. These are the same parameters used in
bubble experiments by Hnat and Buckmaster [25] and used in steady bubble computations
by Ryskin and Leal [41]. In Fig. 8, we show the free surface of the rising bubble. For
this problem, we have an extra level of adaptivity in the region of highest curvature. In
Fig. 9, we compare the volume of the bubble when computed with the extra adaptivity as
opposed to without. In Fig. 10, we display the position of the center of mass of the bubble

FIG. 8. Rise of an initially spherical gas bubble in viscous liquid. An extra level of adaptivity is automatically
added when corner forms in the ensuing cap bubble; density ratio 714:1, viscosity ratio 6667:1, Re= 9.7, We= 7.6,
Fr= 0.78.
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FIG. 9. Plot of mass of a rising cap bubble vs time. Data corresponding to “128× 512” was computed in which
an extra level of adaptivity was added when the corner formed on the cap (aboutt = 2). For data corresponding to
“64× 256,” an extra level of adaptivity was not added.

FIG. 10. Plot of the center of mass of a rising cap bubble vs time. We compare this data with the linear best
fit for 2 < time< 10. Expected slope is 1.
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versus time. The average dimensionless rise speed for this case was 0.99 which differs
from the experiments by 1%. We believe that some of the error in the computed steady
rise-speed is attributable to the fact that we compute in a limited domain and use far-field
boundary conditions. When our computation was run in a domain one quarter the size (each
dimension cut in half) the average dimensionless rise speed was 1.03, a difference of 3%
from the experiments. The advantage of adaptivity here is that enlarging the domain adds
cells only at the coarsest level; the fine grids covering the bubble remain the same size. The
time to run fromt = 0 to 6.25 in the large domain, 5× 20, was only 30% slower than the
cpu time used for the small domain, 2.5× 10.

As a remark, our method has the capability of adaptingonly the level set function for
additional levels̀ max< `≤ `max

max. The level set equation (72) is solved on the additional
levels using the subcycling procedure described in Section 4.5. In order to solve (72), we
interpolate the face-based advection velocities (28) and cell-centered velocities in space
and time using bilinear interpolation. The composite redistance step remains unchanged,
except that it covers levels 0≤ `≤ `max

max. In Fig. 11, we show the free surface for a rising
viscous gas bubble; four levels of adaptivity are used in which only the level set function
is adapted at the last two levels. The last two levels of adaptivity are located at regions of

FIG. 11. Rise of an initially spherical gas bubble in viscous liquid. Two extra levels of adaptivity for only
the level set function are automatically added when corner forms in the ensuing cap bubble; density ratio 714:1,
viscosity ratio 6667:1, Re= 9.7, We= 7.6, Fr= 0.78.
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FIG. 12. Plot of mass of a rising cap bubble vs time. Data corresponding to “256× 1024” was computed in
which two extra levels of adaptivity for only the level set function were added when the corner formed on the cap.

high curvature. In Fig. 12, we compare the volume for the computation shown in Fig. 11 to
the results shown in Fig. 9. There is a 7% increase in computation time due to computing
the level set advection equation and level set redistance operation on the last two levels of
adaptivity.

5.3. Impact of Drop on Water Surface I

We compute the impact of an axisymmetric water drop on a pool of water along with
the “splash” that comes afterward. With the level set method, we automatically handle
the merge of the drop with the pool of water and also the breakup of the water splash. In
our computations, we use dimensionless parameters based on the impact velocityU and
the radius of the dropL. In Fig. 17, we show results usingL = 1 mm andU = 4.0 m/s.
In Fig. 18, we show results usingL = 1 mm andU = 7.6 m/s. The dimensionless impact
velocity is 1; we accelerate the drop with a fictitious gravitational force term 1/Fr= 1/2 for
a total dimensionless time 2. At dimensionless timet = 2, the drop will be traveling with
dimensionless speed of 1 and will have traveled a dimensionless distance of 1 (which is
the initial distance between the drop and the pool). ForU = 4.0 m/s we have Re= 3518,
Fr= 1633, and We= 220. ForU = 7.6 m/s we have Re= 6684, Fr= 5895, and We= 794.
As suggested by the difference in Weber number, the spray in the results forU = 4.0 m/s
(Fig. 17) coagulates more at the tip than the results forU = 7.6 m/s (Fig. 18).

We recomputed the drop impact problem on a single uniform fine 128× 256 grid for
the case whenU = 7.6 m/s (Fig. 19). In Fig. 20, we compare the uniform fine grid results
to the adaptive results. Although the internal memory savings for using an adaptive grid
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was 4:1, the speedup was only 1.7. We believe that this is due to the elliptic solvers for the
approximate projection step and the MAC projection step. The elliptic solvers solve over a
collection of grids at each level. The multigrid preconditioner used by the elliptic solvers
can only coarsen as much as determined by the smallest grid. On the bottom multigrid level,
we must resort to a Gauss–Seidel preconditioned conjugate gradient method. Alternative
elliptic solvers [33, 26] solve on all levels simultaneously, thus avoiding the limitation set
for the bottom multigrid level. Unfortunately, these solvers are based on a straight multigrid
method, in which we have experienced convergence problems for air/water flows with
changes in topology.

5.4. Impact of Drop on Water Surface II

We compute the impact and subsequent bubble entrainment of an axisymmetric water drop
on a pool of water. In the work by Oguz and Prosperetti [36], the boundary integral method

FIG. 13. Rise of inviscid air bubble in water; We= 200, effective fine grid 64× 64× 128.
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FIG. 14. Spherical gas bubble in liquid; density ratio 816:1; We= 200. Left: Cross section of three-
dimensional results(y= 2, x-z plane), effective fine grid 64× 64× 128, dimensions of domain: 4× 4× 8.
Right: Axisymmetric results, effective fine grid 32× 128, dimensions of domain 2× 8.

was used to study the impact of drops on liquid surfaces and the subsequent entrainment of
an air bubble. We shall compare our results to those found in Fig. 2 of the work by Oguz
and Prosperetti [36]. The initial drop radius isL = 1.9 mm and the drop impact velocity
is U = 1.53 m/s. The dimensionless parameters for this problem are Re= 2550, Fr= 126,
and We= 61. For our computations, the dimensionless size of the domain is 10× 20, the
effective fine grid resolution is 128× 256, and the interfacial thickness parameter is 21x`max.
As opposed to the computations done by [36], we do not initialize our computation with
the drop already connected to the pool of water; instead we accelerate the drop towards
the pool of water until it reaches the appropriate speed. The times in our computations are
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FIG. 15. Nonaxisymmetric merging of two viscous gas bubbles, effective fine grid 64× 64× 128.

relative to the impact time of the drop hitting the pool of water. We display our results for
the drop impact and subsequent entrainment in Figure 21 which is in very good agreement
with the results in [36].

5.5. Collision of Drops

We compute the impact of two axisymmetric drops. The drops are initially driven towards
each other by the force

fz = 1

2
(ρ − ρ2) sign(z− zc) (82)
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FIG. 16. Nonaxisymmetric merging of two inviscid gas bubbles, effective fine grid 64× 64× 128.

for t = 0 · · ·1; ρ2 is the density of the gas andzc is the point midway between the drops.
The centers of the drops are initially two diameters apart. The parameters we use for this
problem areρ1/ρ2= 15, µ1/µ2= 350, W= 32, and R= 98. These parameters correspond
to the simulation done by Nobariet al. [35] in Fig. 17 of their paper. For this test problem,
the Weber number and Reynolds number are expressed as

W = ρ1dU2

σ
, R= ρ1Ud

µ1
,

whered is the drop diameter andU is double the speed of each drop. Time is scaled by
2d/U . In Fig. 22, we show our computation of the colliding drops in which the domain
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FIG. 17. Falling 1-mm spherical water drop onto pool of water; density ratio 816:1, viscosity ratio 71:1,
128× 256, impact speedU = 4.0 m/s.

size is 3/2x6 and the effective fine grid resolution is 64× 256. As in [35], time is set to
zero when the drops are one diameter apart. We remark that our results do not agree exactly
with those of [35] because our drops are allowed to “rupture” immediately, whereas the
computations of [35] “rupture” att = 0.4.

5.6. Fully 3D Simulations of Single Rising Gas Bubble

In Fig. 13, we show the computation of the rise of a fully three-dimensional inviscid air
bubble in water. The density ratio is 816:1 and the Weber number is 200. The dimensions



118 SUSSMAN ET AL.

FIG. 18. Falling 1-mm spherical water drop onto pool of water; density ratio 816:1, viscosity ratio 71:1,
128× 256, impact speedU = 7.6 m/s.

of the domain are 4× 4× 8 and the effective number of computational cells on the finest
level of adaptivity (the third level) is 64× 64× 128. We use far-field boundary conditions
on all sides of the domain. In Fig. 14, we display a cross-section of the bubble att = 1.24
andt = 1.48 and compare these results with the results of an axisymmetric bubble problem
in which the effective fine grid resolution is 32× 128. We point out here that we do not have
to do any extra programming in transitioning from a spherical cap bubble into a toroidal
bubble.
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FIG. 19. Falling 1-mm spherical water drop onto pool of water; density ratio 816:1, viscosity ratio 71:1,
128× 256, impact speedU = 7.6 m/s. Adaptive mesh refinement turned off.

5.7. Fully 3D Simulations of the Nonaxisymmetric Merging of Two Bubbles

For these problems, we start off with two gas bubbles whose centers are offset in the “x”
direction by one bubble radii and offset in the “z” direction by 2.3 radii.

In Fig. 15, we display the interaction of two viscous gas bubbles in liquid. The density
ratio is 20:1 and the viscosity ratio is 26:1. The dimensionless parameters we use for this
problem are W= 50, Fr= 1, and R= 503/4. These parameters correspond to Fig. 12 in [50].
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FIG. 20. Falling 1-mm spherical water drop onto pool of water; density ratio 816:1, viscosity ratio 71:1,
128× 256, impact speedU = 7.6 m/s. Comparison between adaptive results on the left and uniform fine grid
results on the right.

The dimensions of the domain are 4× 4× 8 and the effective number of computational
cells on the finest level of adaptivity (the second level) is 64× 64× 128. We use free-slip
boundary conditions on all sides of the domain. Our results agree qualitatively with those
in [50]. We attribute the difference, in part, due to the fact that our bubbles were initially
offset by different values than were the bubbles in [50].

In Fig. 16, we display the interaction of two inviscid gas bubbles in water. The density
ratio is 816:1. As in the previous case, the dimensions of the domain are 4× 4× 8 and the
effective number of computational cells on the finest level of adaptivity (the second level)
is 64× 64× 128. We use free-slip boundary conditions on all sides of the domain.

6. CONCLUSIONS

An adaptive level set method has been presented for computing free surface flows in
which large jumps in density and viscosity occur at the free surface. Surface tension
forces are included in the numerical model. Adaptive mesh methodology is used to focus
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FIG. 21. Falling 1.9-mm spherical water drop onto pool of water; density ratio 816:1, viscosity ratio 71:1,
128× 256, impact speedU = 1.53 m/s.

FIG. 22. Collision of axisymmetric drops; R= 98, W= 32. Time is set to zero when two drops are one
diameter apart. Effective fine grid resolution is 64× 256.
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computational effort to regions near the free surface and in some cases focus additional
attention to regions of high curvature. Examples in two and three dimensions are shown for
a wide range of Reynolds numbers and Weber numbers in which the arbitrary merging and
breakup of fluid mass may take place. We have validated the adaptive level set method against
the bubble experiments of Hnat and Buckmaster [25], drop computations by Oguz and
Prosperetti [36] and boundary integral computations in Sussman and Smereka [44]. Finally,
a convergence study has been conducted in order to measure the order of accuracy for the
problem of a rising inviscid air bubble in water and the problem of an oscillating droplet.

The methodology presented here is currently being extended to the problem of oil spread-
ing under ice [46]. This problem requires the fully implicit rather than semi-implicit treat-
ment of the viscous terms, thereby eliminating the need for a viscous time step constraint.
In addition, one must impose the contact angle boundary condition at the oil/ice/water
junction.

Future directions for this work include embedding the current algorithm in a framework
capable of handling irregular geometries [4] and extending the algorithm to handle flows
with heat transfer and vaporization [28]. These are both necessary in order to model thermal
ink jet devices [2, 20], in which a vapor bubble “pushes” ink out of a jetting device. Finally,
there are ongoing efforts to parallelize the adaptive incompressible flow algorithm, based
on the existing block-structured data format.
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